Т.к. АС диаметр, то вписанные углы АВС и АDC, которые на него опираются равны 180:2=90град.Треугольники АВО и ADО равносторонние, их стороны равны радиусу, значит и углы равны 180:3=60град., следовательно углы BAO и DAO равны 60град., т.е. угол BAD равен 60·2=120град. Угол BСD=180-120=60град. (Сумма углов четырёхугольника равна 360град.)Углы BCA и DCA равны по 30град. (90-60=30 свойство углов прямоугольного треугольника) и являются вписанными в окружность, следовательно дуги на которые они опираются AB и AD равны 30·2=60град.Дуги BC и CD так же в 2 раза больше вписанных углов BAC и DAC, которые на них опираются, т.е. 60·2=120град.ответ: Углы четырёхугольника ABCD равны 120; 90; 60; 90 град. Дуги АВ и CD - 60град., дуги BC CD по 120град.
ПРЯМУЮ, проходящую через середину отрезка перпендикулярно к нему, называют СЕРЕДИННЫМ ПЕРПЕНДИКУЛЯРОМ к отрезку. Теорема. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.Доказательство. Обозначим буквой M произвольную точку серединного перпендикуляра a к отрезку AB и докажем, что AM = BM.Если точка M совпадает с серединой O отрезка AB, то справедливость равенства AM = BM очевидна. Если же M и O – различные точки, то прямоугольные треугольники OAM и OBM равны по двум катетам, поэтому AM = BM. Теорема доказана.