Mettez les verbes entre parenthèses à la forme convenable. Modèle: Je veux du café, je fais bouillir de l'eau.
Cet enfant est paresseux, sa mère le (faire travailler) tous les jours.
Cette lecon est difficile, le professeur la faire répéter) plusieurs fois.
Les examens approchent, il faut (faire travailler) les élèves.
Ma petite est malade, je (faire venir) déjà le médecin.
Даны точки A(3;9) B(8;4) C(-1;7).
1) составить уравнение окружности, проходящей через эти точки, определить координаты центра N и величину R радиуса окружности.
Координаты середин сторон треугольника (основания медиан).
х у
А₁ 3,5 5,5
х у
В₁ 1 8
х у
С₁ 5,5 6,5
Составим уравнения серединных перпендикуляров для сторон АВ и ВС, которые, как известно, проходят через основания медиан A1,B1.
и центр описанной окружности O2:
для стороны AB имеем
C1O2: x−xC1yB−yA=y−yC1xA−xB ⇔ x−5.54−9=y−6.53−8 ⇔ x−5.5−5=y−6.5−5 ⇔ x−y+1=0;
для стороны AC имеем
B1O2: x−xB1yC−yA=y−yB1xA−xC ⇔ x−17−9=y−83−(−1) ⇔ x−1−2=y−84 ⇔ 2x+y−10=0.
Теперь находим координаты центра описанной окружности как точки пересечения срединных перпендикуляров.
x−y+1=0
2x+y−10=0 сложение
3х - 9 = 0. Отсюда х = 9/3 = 3. Значение по оси Оу находим постановкой значения х = 3 в уравнение перпендикуляра. у = х + 1 = 3 + 1 = 4.
Координаты центра N(3; 4).
Находим радиус R = √((3 - 3)² + (4 - 9)²) = √(0 + 25) = 5.
Уравнение окружности: (x − 3)² + (y − 4)² = 5².
2) Написать уравнение эллипса, проходящего через точки B и C, найти полуоси, фокусы, эксцентриситет.
Примем центр эллипса в начале координат (иначе нет решения без дополнительных данных).
(х²/а²) + (у²/b²) = 1. Подставим заданные координаты точек В и С.
(64/а²) + (16/b²) = 1.
(1/а²) + (49/b²) = 1. Замена: (1/а²) = u, (1/b²) = v. Система:
64u + 16v = 1 64u + 16v = 1
1u + 49v = 1 Умножим = 64 64u + 3136v = 64 вычтем 2 - 1
3120v = 63
v = 63/3120 = 21/1040 ≈ 0,020192308
Находим параметр b = √(1/v) = 7,037316.
u = 1 - 49v = 0,010577.
Находим параметр a = √(1/u) = 9,72345.
Уравнение эллипса (х²/9,72345²) + (у²/7,037316²) = 1.
Параметр с = √(a² - b²) = 6,709817.
Эксцентриситет е = с/а = 6,709817/9,72345 = 0,690066.
3) точки и кривые в системе координат в приложении.