Интересно, что задача заявлена как "Геометрия 5-9" :)))
Еще интересно, что фигура, "ограниченная" параболой y = x^2 + 4; и вертикальной прямой x = 2; на самом деле ничем не ограничена. Чтобы задача имела смысл, я буду считать, фигура ограничена еще и прямыми x = 0; и y = 0;
Неопределенный интеграл (с точностью до произвольной постоянной C) от функции
y = x^2 + 4;
равен
F(x) = x^3/3 + 4*x + C; (то есть производная F'(x) = y)
Начерти тетраэдр SABC. Проведи высоту SO. Точка О является центром вписанной и описанной окружности, поскольку в тетраэдре все основания - правильные треугольники. Тебе нужно найти высоту тетраэдра. ЕЕ найдем из треугольника SOB, где ОВ - радиус описанной окружности. И находится он по формуле R = a/√3, где а - сторона треугольника. ОВ = 8/√3 см. По теореме пифагора высота OF = √ (64 - 64/3) = 8√2/√3 см Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра. Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию. ЕЕ площадь: S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2 Если не нравятся корни в ответах, то калькулятор, хотя обычно ответ принято оставлять в такой форме.
2Пусть параллельные прямые А и В пересечены секущей MN.Докажем, что накрест лежащие углы, например 1 и 2,равны. Допустим что углы 1 и 2 равны. Отложим от луча МN угол PMN,равный углу 2,так чтобы угол PMN и угол 2 были накрест лежащими углами при пересечениии прямых MP и В секущей MN.По построению эти накрест лежащие углы равны, потому MPIIB.Мы получили, что через точку М проходят две прямые (прямые А и MP),паралелельные прямой В. Но это противоречит аксиоме параллельных прямых. Значит наше допущение невнрно и угол 1 = 2.
Интересно, что задача заявлена как "Геометрия 5-9" :)))
Еще интересно, что фигура, "ограниченная" параболой y = x^2 + 4; и вертикальной прямой x = 2; на самом деле ничем не ограничена. Чтобы задача имела смысл, я буду считать, фигура ограничена еще и прямыми x = 0; и y = 0;
Неопределенный интеграл (с точностью до произвольной постоянной C) от функции
y = x^2 + 4;
равен
F(x) = x^3/3 + 4*x + C; (то есть производная F'(x) = y)
Площадь фигуры равна
S = F(2) - F(0) = 2^3/3 + 4*2 = 32/3;