Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.
4см, 10 см -- основания трапеции. (Диагональ разбивает трапецию на 2 треугольника, их средние линии 2 и 5см, значит их основания, а они являются трапеции равны 4 и 10 см). В трапеции опустим высоты из вершин тупых углов. Они разбивают большее основание на отрезки 3, 4, 3 см. Высоты, опущенные из вершин тупых углов разбивают трапецию на 2 равных прямоугольных треугольника и прямоугольник. Гипотенуза прямоугольного треугольника равна 6, катет 3,значит , угол образованный высотой и боковой стороной 30 градусов, значит угол при большем основании 60 градусов, а тупые углы по 120 градусов
Объяснение:
Дано: Хорды AB=CD пересекаются в точке О. Доказать: AO=CO, DO=BO.
Док-во: Соединим точки A B C D как на рисунке и рассмотрим треугольники ABD и CDB. Равные хорды стягивают равные дуги, значит вписанные углы ADB и CBD равны, а вписанные углы DAB и BCD опираются на одну и ту же дугу, значит они равны. Поскольку в треугольнике сумма углов равна 180°, то и оставшиеся углы ABD и CDB равны. Из равенства этих двух углов (<ABD=<CDB) следует, что △DOB - равнобедренный. => DO=BO. Поскольку AB=AO+BO и CD=DO+CO, а AB=CD, то и AO=CO, чтд.