Ну, если радиус основания r, то высота осевого сечения (то есть - высота конуса) тоже r (это же равнобедренный прямоугольный треугольник), основание осевого сечения 2*r, боковые стороны r*√2,
1)Так как нам известны длина образующе и высота, то по теореме Пифагора, можно высчитать радиус, который равен sqrt(100-36)=sqrt64=8 Объем равен 1/3Пr^2h=1/3П*64*6=128П Площадь равна=Пr(r+l)=П8(8+10)=144П 2)Из формулы длины окружности выражаем радиус: C=2Пr=8П=>r=4, то диаметр равен 8 Также находим сразу высоту по формуле Пифагора: sqrt(64-16)=sqrt48 Sб.п.=Пrl=П*4*8=32П Sп.п.=Пr(r+l)=4П(4+8)=48П V=1/3Пr^2h=1/3П16sqrt(48) 3)Исходя из формулы площади основания выражаем радиус: S=Пr^2=16П=>r=4 Выражаем образующую:sqrt(36+16)=sqrt52 С=2Пr=2П4=8П S=Пr(r+l)=П4(4+sqrt52) V=1/3Пr^2h=1/3П16*6=32П
Ну, если радиус основания r, то высота осевого сечения (то есть - высота конуса) тоже r (это же равнобедренный прямоугольный треугольник), основание осевого сечения 2*r, боковые стороны r*√2,
(2 + 2*√2)*r = m; r = m*(√2 - 1)/2;
Объем конуса равен
V = (1/3)*(pi*r^2)*r = (pi/3)*r^3 = (pi/24)*m^3*(√2 - 1)^3 = (pi*(5*√2 - 7)/24)*m^3*;