М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olysenko290
olysenko290
27.12.2021 19:07 •  Геометрия

11 класс последнее задания которое не мог понять. 2. Треугольная пирамида SABC основана на равностороннем треугольнике ABC. Боковая кромка SA перпендикулярна базовой плоскости. Длина базовой кромки 6 см, длина кромки SA 3 см.

a) Создайте чертеж пирамиды SABC, соответствующий описанию. Определите размер петли SAB и SAC.

(b) Обосновано, что ребра SC и SB имеют одинаковую длину.

в) Вычислить расстояние от вершины S до ребра BC. Обоснуйте свои суждения.

г) Рассчитайте площадь поверхности стороны пирамиды SABC.

👇
Открыть все ответы
Ответ:
gyulmalievasab
gyulmalievasab
27.12.2021
Проведем DK⊥SC.
ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники).
Тогда и ВК⊥SC, значит
∠DKB - линейный угол двугранного угла при боковом ребре пирамиды.
Обозначим его α.
sinα = 12/13

SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒
SC⊥OK.
Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине.
Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13        ( 1 )

ΔOKD: OK = KD · cos (α/2)

Угол α тупой, т.к. sin(α/2) = OD/DK > OD/DC = 1/√2
cos α  = - √(1 - sin²α) = - √(1 - 144/169) = - √(25/169) = - 5/13

cos (α/2) = √((1 + cos α)/2) = √((1 - 5/13)/2) = √(8/26) = √(4/13) = 2/√13

Вернемся к ΔOKD:
ОК = KD · cos (α/2) = KD · 2/√13
Подставим в равенство (1):
SC · KD · 2/√13 = 7√13
SC · KD = 7√13 · √13 / 2 = 91/2
Но KD - высота боковой грани SCD, проведенная к ребру SC.
Sscd = 1/2 · SC · KD = 1/2 · 91/2 = 91/4
Тогда площадь боковой поверхности:
Sбок = 4 · Sscd = 4 · 91/4 = 91
4,6(83 оценок)
Ответ:
ответ:

1.Треуго́льник— геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника.

2.Периметр- это сумма всех сторон.

3. Треугольники называются равными, если у них соответствующие стороны равны.

4.Теорема-это утверждение, которое было доказано на основе ранее установленных утверждений: других теорем и общепринятых утверждений, аксиом. Другими словами, теорема - это математическое утверждение, которое необходимо доказать.

5.Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

6.Отрезок, один конец которого данная точка, а другой конец лежит на прямой, образующий с прямой угол 90°, называется перпендикуляром, проведенным из данной точки к прямой.

7.Через данную точку к данной прямой можно провести перпендикуляр и только один.

8.Медиа́на треугольника ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

9.Треугольник имеет три медианы

10.Биссектриса треугольника - отрезок биссектрисы одного из его углов до ее пересечения с противолежащей стороной треугольника.

(как ещё говорят- биссекртриса- это такая крыса которая делит угол попалам)

11.Треугольник имеет 3 биссекртисы.

12.Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону называется высотой треугольника.

13.Треугольник имеет 3 высоты.

14.Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине. Боковыми называются равные стороны, а последняя неравная им сторона — основанием.

15.Треугольник у которого все стороны равны между собой, называется равносторонним

16. В равнобедренном треугольнике углы при основании равны.

17.В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

18.Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.

19.Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны

20.Определение – это первичное описание объекта

21.Радиус окружности - равные отрезки, соединяющие центр с точками окружности. Хорда - отрезок, соединяющий любые две точки окружности. Диаметр окружности - хорда, проходящая через центр. ОКРУЖНОСТЬ - геометрическое место точек, равноудалённых от одной точки, называемой ЦЕНТРОМ

22.Например, дан угол с вершиной А и луч OM. Проведем окружность произвольного радиу с центром в вершине А данного угла. Эта окружность пересекает стороны угла в точках B и C. Затем проведем окружность того же радиуса с центром в начале данного луча OM. Она пересекает луч в точке D. После этого построим окружность с центром D, радиус которой равен BC. Окружности с центрами O и D пересекаются в двух точка. Одну из этих точек обозначим буквой E. Угол MOE - искомый.

23.Например, если Вам нужно построить биссектрису угла, равного 78 градусов, то нужно приложить транспортир к одной из сторон этого угла, отметить точку возле метки 78 / 2 = 39 градусов и провести луч из вершины заданного угла через полученную точку. Это и будет биссектриса угла 78 градусов.

24.1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.

2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.

3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.

Прямая b - искомый перпендикуляр к прямой а.

25.Надо построить из каждой из вершин отрезка окружности одинакового радиуса (причем радиус должен быть меньше самого отрезка и больше половины отрезка (приблизительно на глаз)). Эти окружности пересекаться в двух точках. линия которая проходит через обе эти точки пересечет данный отрезок в середине.

4,8(42 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ