Ребят, очень , хелп! В правильной срезанной четырехугольной пирамиде диагонали оснований равны 10 см и 6 см, а боковая грань образует с плоскостью основания угол 60 градусов. Найти высоту срезанной пирамиды.
В правильной усеченной четырехугольной пирамиде диагонали оснований равны 10 см и 6 см, а боковая грань образует с плоскостью основания угол 60 градусов. Найти высоту усеченной пирамиды.
Объяснение:
1) АВСDA₁B₁C₁D₁- усеченная пирамида , Точки О и О₁ -точки пересечения диагоналей оснований Т.к пирамида правильная , то основания кавдраты.
АВСD- нижнее основание , по т. Пифагора АВ=√(10²:2)=5√2 (см).
A₁B₁C₁D₁-верхнее основание , по т. Пифагора A₁B₁=√(6²:2)=3√2 (см).
2) Проведем через точки О и О₁ отрезки МН и М₁Н₁ перпендикулярно сторонам квадратов.Тк О₁Н₁ ⊥ВС, то SH⊥ВС по т. о трех перпендикулярах . Поэтому линейным углом между плоскостью боковой грани и плоскостью основания будет ∠НН₁М=60°.
3) Рассмотрим сечение , проходящее через МН и М₁Н₁ перпендикулярно сторонам основаниям. В сечении получилась равнобедренная трапеция ММ₁Н₁Н.
Проведем высоты М₁К и Н₁Р в трапеции . Тогда КР=М₁Н₁ =3√2 см , а МК=РН=( 5√2-3√2):2=√2 (см).
Внешний угол при вершине равнобедренного треугольника равен сумме двух внутренних, не смежных с ним, т.е. сумме двух равных углов при основании. А биссектриса разбивает внешний угол на 2 равных угла. И получается, что биссектриса с основанием и секущая, как одна из сторон треугольника образуют, равные соответственные углы. А если при пересечении двух прямых третьей окажется, что какие-нибудь соответственные углы равны, то такие прямые параллельные. Значит, биссектриса параллельна основанию равнобедренного треугольника. И это действительно для любых равнобедренных треугольников.
Найдём градусную меру центрального угла: Исходя из того, что опираться он будет на дугу описанной окружности, каждый угол шестиугольника равен 120°, а радиусы являются биссектрисами его углов, получаем: 180° - 120°/2 - 120°/2 = 180° - 60° - 60° = 60°. Площадь кругового сектора находится по формуле: Sсек = πr²A/360° A = 60°. Значит, Sсек = 1/6Sокруж Sокр. = 6Sсек = 6•6π = 36π. Радиус описанной окружности тогда равен √Sокр/π = 6. Радиус описанной окружности равен стороне шестиугольника. Радиус вписанной окружности равен: r = R√3/2 = 6√3/2 = 3√3. Площадь любого описанного многоугольника находится по формуле: S = 1/2Pr Sшест. = 1/2•6a•3√3 = 1/2•6•6•3√3 = 54√3.
В правильной усеченной четырехугольной пирамиде диагонали оснований равны 10 см и 6 см, а боковая грань образует с плоскостью основания угол 60 градусов. Найти высоту усеченной пирамиды.
Объяснение:
1) АВСDA₁B₁C₁D₁- усеченная пирамида , Точки О и О₁ -точки пересечения диагоналей оснований Т.к пирамида правильная , то основания кавдраты.
АВСD- нижнее основание , по т. Пифагора АВ=√(10²:2)=5√2 (см).
A₁B₁C₁D₁-верхнее основание , по т. Пифагора A₁B₁=√(6²:2)=3√2 (см).
2) Проведем через точки О и О₁ отрезки МН и М₁Н₁ перпендикулярно сторонам квадратов.Тк О₁Н₁ ⊥ВС, то SH⊥ВС по т. о трех перпендикулярах . Поэтому линейным углом между плоскостью боковой грани и плоскостью основания будет ∠НН₁М=60°.
3) Рассмотрим сечение , проходящее через МН и М₁Н₁ перпендикулярно сторонам основаниям. В сечении получилась равнобедренная трапеция ММ₁Н₁Н.
Проведем высоты М₁К и Н₁Р в трапеции . Тогда КР=М₁Н₁ =3√2 см , а МК=РН=( 5√2-3√2):2=√2 (см).
ΔРНН₁ -прямоугольный , tg60°=PН₁ /PH , √3=PН₁ /√2 , PН₁ =√6 см.
Поэтому высота усеченной пирамиды √6 см.