треугольник АВС, уголВ=105, уголС=45, уголА=180-105-45=30, против наибольшего угла лежит наибольшая сторона=АС, наименьшая высота идет к наибольшей стороне - высота ВН, треугольник ВНС прямоугольный, уголНВС=90-уголС=90-45=45, треугольник ВНС равнобедренный, СН=ВН=х, треугольник АВН прямоугольный, АН=ВН/tgA=х/(1/√3)=х√3, АС=АН+НС=х√3+х=х(√3+1), площадь=1/2*АС*ВН, 2*(√3+1)=х(√3+1), х=2=ВН
если tg не проходили тогда - треугольник АВН прямоугольный, АВ=2*ВН=2*х (ВН лежит против угла 30 =1/2 гипотенузы), АН²=АВ²-ВН²=4х²-х²=3х², АН=х√3, а далее по тексту выше
1) найдём гипотенузу по теореме Пифагора: с=√(24^2+18^2)=√(576+324)=√900= 30; 2) биссектриса проведена к катету, равному 18 ( против меньшей стороны лежит меньший угол); 3) биссектриса делит катет на две части х и у; х+у=18 (х - ближе к прямому углу); 4) биссектриса делит катет на пропорциональные части: 24:х=30:у 30х=24у 5х=4у у=5х/4 (1) х+у=18 (2) подставим из (1) в (2): 5х/4 + х=18 5х+4х=18*4 9х=18*4 х=2*4=8 5) по теореме Пифагора найдём биссектрису (L): L=√(24^2+8^2)=√(576+64)=√640=√64*10=8√10 ответ: 8√10
треугольник АВС, уголВ=105, уголС=45, уголА=180-105-45=30, против наибольшего угла лежит наибольшая сторона=АС, наименьшая высота идет к наибольшей стороне - высота ВН, треугольник ВНС прямоугольный, уголНВС=90-уголС=90-45=45, треугольник ВНС равнобедренный, СН=ВН=х, треугольник АВН прямоугольный, АН=ВН/tgA=х/(1/√3)=х√3, АС=АН+НС=х√3+х=х(√3+1), площадь=1/2*АС*ВН, 2*(√3+1)=х(√3+1), х=2=ВН
если tg не проходили тогда - треугольник АВН прямоугольный, АВ=2*ВН=2*х (ВН лежит против угла 30 =1/2 гипотенузы), АН²=АВ²-ВН²=4х²-х²=3х², АН=х√3, а далее по тексту выше