Объяснение:
а) sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
sin(180°-60°)=sin(180°)cos(60°)-cos(180°)sin(60°)=0+√3/2=√3/2
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
cos(180°-30°)=cos(180°)cos(30°)+sin(180°)sin(30°)=-√3/2+0=-√3/2
б) cos(135°)=cos(180°-45°)=cos(180°)cos(45°)+sin(180°)sin(45°)=-√2/2
sin(150°)=sin(180°-30°)=sin(180°)cos(30°)-cos(180°)sin(30°)=1/2
ctg(135°)=ctg(180°-45°)=-ctg(45°)=-1
в) cos(150°) (смотря из (а)) = -√3/2
ctg(150°)=ctg(180°-30°)=-ctg(30°)=-√3
cos(150°)>ctg(150°)
sin(150°)=sin(180°-30°)=sin(180°)cos(30°)-cos(180°)sin(30°)=1/2
sin(135°)=sin(180°-45°)=sin(180°)cos(45°)-cos(180°)sin(45°)=√2/2
sin(150°)<sin(135°)
г) смотря из примеров:
cos(30°)=√3/2
cos(135°)=-√2/2
cos(150°)=-√3/2
cos(30°; 135°; 150°)
sin(30°)=1/2
sin(135°)=√2/2
sin(150°)=1/2
sin(30°)=sin(150°)
sin(135°; 30°; 150°)
ctg(30°)=√3
ctg(135°)=-1
ctg(150°)=-√3
ctg(√3; -1; -√3)
Т. к. АВ/А1В1 = 2/3 => k (или коэффициент подобия) = 2/3 =>
АВ = (2*А1В1)/3 (или (2/3)*A1B1)
ВС = (2*В1С1)/3 (или (2/3)*В1С1)
площадь треугольника равна половине произведения двух сторон на синус угла между ними, т. е. Sabc = (1/2) * AB * sinB * BC;
заменяем АВ и ВС через А1В1 и В1С1 соответственно =>
Sabc = (1/2) * (2/3) * А1В1 * sinB * (2/3) * B1C1 = 180
(Sa1b1c1 = (1/2) * A1B1 * sinB * B1C1)
Sa1b1c1 * (4/9) = 180 (через Sa1b1c1 заменяем (1/2)*А1В1*sinB*B1C1, (2/3)*(2/3)=(4/9), а Sabc = 180
Sa1b1c1 = 180 / (4/9) = 405
вроде так