1. Прежде заметим, что AB = CD = 3√2; AD = BC = 5; (рисунок) ∠A = ∠C = 45°; ∠B = ∠D = 180° - 45° = 135° (Свойства параллелограмма)
а) AD · AB = BC · AB = |BC| · |AB| · cos ∠A = 5 · 3√2 · cos 45° = 15√2 · √2 / 2 = 15
б) BA · BC = |BA| · |BC| · cos ∠B = 3√2 · 5 · cos 135° = -15√2 · √2/2 = -15
в) AD · BH = 0, так как AD ⊥ BH
2. m*n=3*(-2)+(-2)*3=-6-6=-12
4.Векторы перпендикулярны, если их скалярное произведение равно 0
ab=0
{2;-3}*{x;-4}=0;
2*x+(-3)*(-4)=0;
2x+12=0;
x+6=0;
x=-6
5.1) Найдем длины сторон: АВ=sqrt((0-3)^2+(6
9)^2)=sqrt(9+9)=sqrt(18)=3*sqrt(2);
BC=sqrt((4-0)^2+(2-6)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2);
AC=sqrt((4-3)^2+(2-9)^2)=sqrt(1+49)=sqrt(50)=5*sqrt(2).
2) Угол А образован сторонами АВ и АС. По теореме косинусов:
BC^2=AB^2+AC^2-2*AB*AC*cosA; => cosA=(AB^2+AC^2-BC^)/(2*AB*AC)=
=(18+50-32)/(2*3*sqrt(2)*5*sqrt(2))=36/60=3/5.
Объяснение:
1б) АС=BD =4√2 (диагонали квадрата со стороной 4).
АК:КС=1:3, значит АК=(1/4)*АС=(1/2)*АО. Тогда в треугольнике ABD отрезок EF - средняя линия и равен (1/2)*BD. Или EF=2√2.
В прямоугольном треугольнике АС1С гипотенуза АС1=4√6 (дано), катет
АС=4√2. Значит высота параллелепипеда равна СС1=√(96-32)=8. FG=CC1=8.
Тогда площадь сечения равна EF*FG=2*8=16√2 ед².
2a) В квадрате диагонали пересекаются под прямым углом, следовательно сечения этого параллелепипеда, проходящие через диагонали боковых граней АА1В1В и DD1С1 также взаимно перпендикулярны и перпендикулярны этим боковым граням, так как параллелепипед прямоугольный. Следовательно, искомое сечение EFGH будет проходить через точку М параллельно сечению ADC1B1 и представляет собой прямоугольник.
2б) D1С=DC1 =6√2 (диагонали квадрата со стороной 6).
D1M:MС=1:5, значит D1M=(1/6)*D1С=(1/3)*D1О. Тогда треугольники DDC1 и ED1H подобны с коэффициентом подобия 1/3 и отрезок EH равен (1/3)*DС1. Или EН=(1/3)*6√2=2√2.
В прямоугольном треугольнике BD1D гипотенуза BD1=√88 (дано), катет
DD1=6. Значит диагональ основания параллелепипеда по Пифагору равна BD=√(88-36)=√52. Тогда AD=√(BD²-AB²)= √(52-36)=4. EF=AD=4.
Площадь сечения равна EF*EH=4*2√2=8√2 ед².