3)треугольники равны по 1(общей) стороне и 2 прилежащим углам
4)треугольники равны по 2 сторонам и прилежащим к ним углу
5)треугольники равны по 1(общей) стороне и 2 прилежащим углам
6)Треугольники образуют равнобедренный треугольник ⇒ сторона MS = SO ⇒ ΔQMS = ΔSOT (так как ∠QSM = ∠TSO как вертик. Сторона MS = SO и ∠QMS = ∠SOT) ⇒ MS + ST = OS + SQ ⇒ QO = MT ⇒ ΔMTO = ΔMQO (по 2 сторонам и прилежащим к ним углу)
7)ΔROQ = ΔOPD (по 2 сторонам и прилежащим к ним углу) ⇒ RO = PO и DO = OQ ⇒ RO + OD = PO + OQ ⇒ RD = QP ⇒ ΔEDR = ΔPEQ (по 2 сторонам и прилежащим к ним углу)
8)∠ACB = ∠ECD (как вертик.) ∠BAC = ∠CED(как смежные) ⇒ ΔABC = ΔCED(по 1 стороне и 2 прилежащим углам)
13)CE = CA так как CD + DE = AB + BC ⇒ ΔACE равноб. ⇒ ∠A = ∠E ⇒ ΔABF = ΔKDE (по 1 стороне и 2 прилежащим углам)
14)∠ABF = ABC - 90*
∠DCE = DCB - 90* ⇒ ∠ABF = ∠DCE
так как BC║AD то BF = CE ⇒ ΔABF = ΔDCE(по 1 стороне и 2 прилежащим углам)
а) пусть угол 1=35°
на прикреплённом фото все углы обозначены
1=4 как вертикальные, 4=5 как накрест лежащие при а||b и секущей с, 5=8 как вертикальные => 1=4=5=8=35°
угол 1 и угол 2 смежные => 1+2=180° => угол 2=180-1=145°
угол 4 и угол 6 односторонние при а||b и секущей с => 4+6=180 => 6=180-35=145°
угол 2=6 как соответственные при а||b и секущей с (второй вариант доказательства того, что угол 2=6), 6=3 как накрест лежащие при а||b и секущей с угол 3=7 как соответственные или угол 6=7 как вертикальные =>
2=3=6=7=145°
б) угол 2 на 50° больше угла 1
1 и 2 смежные, => 1+2=180, угол 1=х, угол 2=х+50
х+х+50=180
2х=130
х=65°
=> угол 1=65°, угол 2=65+50=115°
из п. а берем что 1=4=5=8=> 4=5=8=65°
2=3=6=7 => 3=6=7=115°