ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
Как это нередко бывает, в решении больше рассуждений, чем вычислений. Сделаем рисунок, проведем из А и В перпендикуляры к прямой, так как расстояние от точки до прямой измеряется перпендикулярными отрезками. Обозначим расстояние от А до | АС, от В до | - ВК, точку пересечения АВ с прямой | обозначим О. Рассмотрим рисунок. Получившиеся треугольники АОС и ВОК - прямоугольные по построению и подобны, т.к. если в прямоугольных треугольниках имеется по равному острому углу, то такие треугольники подобны. Здесь равны вертикальные углы при вершине О. Коэффициент подобия треугольников равен отношению соответственных сторон ВК:СА=36:12=3 Следовательно, отношение их гипотенуз ВО:ОА=3 ВО=3АО. АВ=ВО+АО=4АО Найдем и обозначим середину АВ точкой М. Из М опустим на прямую | перпендикуляр МН, являющийся расстоянием от М до прямой | АМ=АВ:2=2 АО. ОМ=АО. Если гипотенуза и острый угол одного прямоугольного треугольника равна гипотенузе и острому углу другого прямоугольного треугольника,то такие треугольники равны. Следовательно, МН=АС=12 см [email protected]
ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
Объяснение: