М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
denis20043601
denis20043601
17.10.2021 16:18 •  Геометрия

АВСD – квадрат. MB (ABCD), Відстанню від точки М до прямої AD буде довжина відрізка

👇
Открыть все ответы
Ответ:
sladkaezhka19
sladkaezhka19
17.10.2021

ответ:

объяснение:

1. δавс равнобедренный, значит углы при основании ас равны.∠сва = ∠сав = (180° - 30°)/2 = 75°2. δabd - равнобедренный, значит углы при основании ad равны. ∠bad = ∠bda = 70°.∠сва - внешний, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠bad + ∠bda = 140°.3. δbmn равнобедренный, значит углы при основании nm равны.∠bmn = ∠bnm = 75°.∠mbn = 180° - (75° + 75°) = 30°∠cba = ∠mbn = 30° как вертикальные.4. δabd равнобедренный, вм медиана, проведенная к основанию ad, а значит и высота.∠вма = 90°.∠сва - внешний для треугольника мва, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вам + ∠вма = 45° + 90° = 135°5. δdbc равнобедренный, значит углы при основании сd равны. ∠bdс = ∠bсd = 40°. ∠cdb = 180° - (40° + 40°) = 100°ва - медиана равнобедренного треугольника, значит и биссектриса.∠сва = ∠cbd/2 = 100°/2 = 50°6. ск - медиана равнобедренного треугольника cbd, проведенная к основанию bd, а значит и высота. ∠скв = 90°∠сва - внешний для треугольника скв, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вкс + ∠вск = 30° + 90° = 120°7. ва - медиана равнобедренного треугольника асd, проведенная к основанию сd, а значит и высота. ∠сва = 90°8. δеbd - равнобедренный, значит углы при основании еd равны. ∠bеd = ∠bdе = 70°.∠еbd = 180° - (70° + 70°) = 40°∠сва = ∠еbd = 40° как вертикальные.

4,7(30 оценок)
Ответ:
gazizullinnafi
gazizullinnafi
17.10.2021

Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас

Объяснение:

Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас

4,5(95 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ