Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас
Объяснение:
Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас Котакбас
ответ:
объяснение:
1. δавс равнобедренный, значит углы при основании ас равны.∠сва = ∠сав = (180° - 30°)/2 = 75°2. δabd - равнобедренный, значит углы при основании ad равны. ∠bad = ∠bda = 70°.∠сва - внешний, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠bad + ∠bda = 140°.3. δbmn равнобедренный, значит углы при основании nm равны.∠bmn = ∠bnm = 75°.∠mbn = 180° - (75° + 75°) = 30°∠cba = ∠mbn = 30° как вертикальные.4. δabd равнобедренный, вм медиана, проведенная к основанию ad, а значит и высота.∠вма = 90°.∠сва - внешний для треугольника мва, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вам + ∠вма = 45° + 90° = 135°5. δdbc равнобедренный, значит углы при основании сd равны. ∠bdс = ∠bсd = 40°. ∠cdb = 180° - (40° + 40°) = 100°ва - медиана равнобедренного треугольника, значит и биссектриса.∠сва = ∠cbd/2 = 100°/2 = 50°6. ск - медиана равнобедренного треугольника cbd, проведенная к основанию bd, а значит и высота. ∠скв = 90°∠сва - внешний для треугольника скв, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вкс + ∠вск = 30° + 90° = 120°7. ва - медиана равнобедренного треугольника асd, проведенная к основанию сd, а значит и высота. ∠сва = 90°8. δеbd - равнобедренный, значит углы при основании еd равны. ∠bеd = ∠bdе = 70°.∠еbd = 180° - (70° + 70°) = 40°∠сва = ∠еbd = 40° как вертикальные.