Отрезки АВ и АС касательных из одной точки (А) до точек касания (В и С) равны (свойство). =>
Треугольник АВС равнобедренный с основанием ВС.
Угол ВАС при вершине равен 60° (дано), следовательно, треугольник равносторонний (углы при основании равны между собой и так же равны по (180-60):2 = 60°.
В прямоугольном треугольнике АВО угол ВАО равен 30°, так как ОА - биссектриса угла между касательными к окружности (свойство). Против угла 30° лежит катет (радиус окружности), равный половине гипотенузы (отрезок АО). Итак, АО = 40мм.
Тогда в треугольнике АОВ по Пифагору АВ = √(40²-20²) = 20√3 мм.
Периметр равностороннего треугольника АВС равен
Pabc = 3*АВ = 60√3 мм.
Это достаточно просто. Признак равенства треугольников по двум сторонам и углу между ними можно использовать.
Треугольник ABC с медианами AK BL CM и треугольник DEF с медианами DO EP FR.
Так как треугольники равны, AB=DE BC=EF AC=DF, в силу свойств медианы половины равных сторон также равны BK=KC = EO=OF, углы a=d b=e c=f.
Получаем для ABK и DEO
AB=DE по условию
BK=EO
a=d по условию. Эти треугольники равны, соответственно и равны все их стороны.
То же самое верно для двух оставшихся медиан.
Что и требовалось доказать.
AC = 21
Объяснение:
проверим пропорциональность сторон ΔАВС и ΔNMB
AC = 21