М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
xerobiriv
xerobiriv
01.12.2022 19:11 •  Геометрия

Кути трикутника відносяться як 16: 8. Знайдіть кут А, якщо вс найменша сторона.​

👇
Открыть все ответы
Ответ:
AlesyaDreamer
AlesyaDreamer
01.12.2022

Обозначим проекцию апофемы на основание за х.

Тогда проекция боковой стороны на основание будет 2х.

По Пифагору имеем - боковая сторона L равна:

L = √((2x)² + (√3)²)  = √(4x² + 3).

Апофема А равна √(x² + (√3)²)  = √(x² + 3).

Высота треугольника основания равна 3х.

Тогда сторона основания а = 3x/cos 30° = 3x/(√3/2) = 6x/√3 = 2√3x.

Но, так как сторона основания - это гипотенуза при двух катетах L, то можно выразить: a = √(2L²) = L√2 = √(4x² + 3)*√2 = √(8x² + 6).

Приравняем: √(8x² + 6) = 2√3x.   Возведём в квадрат:

8x² + 6 = 12x   или 4x² = 6  или 2x² = 3.

Отсюда находим х = √(3/2).

Теперь можно определить длину стороны основания, подставив значение х: а = 2√3*(√(3/2)) = 3√2.

Площадь основания So = a²√3/4 = 18√3/4 = 9√3/2 кв.ед.

ответ: V = (1/3)SoH = (1/3)*(9√3/2)*√3 = (9/2) куб.ед.

4,6(72 оценок)
Ответ:
VeronikaBruhova
VeronikaBruhova
01.12.2022

Задача: Высоты треугольника ABC пересекаются в точке O. Величина угла ∡BAC = 63°, величина угла ∡ABC = 72°. Определить угол ∡AOB.

Р-м Δ ABE:

∡AEB = 90°, ∡ABE = 72° (∡ABE ∈ ∡ABC).

Исходя из теоремы о сумме углов треугольника, градусная мера ∡BAE будет равна:

∡BAE = 180−(∡AEB+∡ABE)=180−(90+72) = 180−162 = 18°.

Р-м Δ ABD:

∡ADB = 90°, ∡BAD = 63° (∡BAD ∈ ∡BAC)

Исходя из теоремы о сумме углов треугольника, градусная мера ∡ABD будет равна:

∡ABD = 180−(∡ADB+∡BAD) = 180−(90+63) =180−153 = 27°.

По аналогии, угол ∡AOB в Δ ABO равен:  

∡AOB = 180−(∡BAO+ABO) = 180−(18+27) = 180−45 = 135°

ответ:  ∡AOB = 135°.

Задача: В равнобедренном треугольнике ABC с основанием AC к стороне BC проведена высота AM и биссектриса AN. Найти угол ∡MAN, если ∡B = 22°.

Р-м Δ ABC:

∡B = 22°, ∡A = ∡C = (180−22)/2 = 158/2 = 79°

Р-м Δ ACM:

∡AMC = 90°, ∡ACM = 79° ⇒ ∡CAM = 180−(90+79) = 180−169 = 11°.

∡BAN = ∡CAN = 79/2 = 39,5°, т.к. AN — биссектриса

Тогда ∡MAN = ∡CAN−∡CAM = 39,5−11 = 28,5°

ответ: ∡MAN = 28,5°.

4,6(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ