Ну вы хотя бы градусы маленькой буквой о обозначали, а не 0. 1) Смежные углы в сумме дают 180°. Один 28°, другой 152° 2) При пересечении двух прямых получаются 2 вертикальных угла (равны друг другу) и два смежных (в сумме 180°). Углы равны 70°, 70°, 110°, 110°. 3) Если внешний угол равен 40°, то внутренний 180° - 40° = 140°. Второй угол равен 30°, а третий 180° - 140° - 30° = 10° 4) В равнобедренном треугольнике медиана - она же биссектриса и высота. Поэтому боковые стороны AB=BC, сторона BO общая, углы ABO=CBO. По 2 признаку равенства треугольников (2 стороны и угол) эти треугольники равны. 5) Углы прямоугольного треугольника A = 90°, C = 15°, B = 75°. Угол В делят на CBD = 15° и ABD = 60°. Значит, угол ADB = 90° - 60° = 30°. Катет против угла 30° равен половине гипотенузы. а) Значит, гипотенуза BD = AB*2 = 3*2 = 6 см. б) Треугольник BDC - равнобедренный с углами B = C = 15°, D = 150°. Стороны BD = DC = 6 см. По правилу треугольника, сторона BC должна быть меньше суммы двух других сторон. BC < BD + DC = 6 + 6 = 12 см.
1. По первому признаку подобия треугольников будут подобны любые два .(?) треугольника.
I. Признак подобия треугольников по двум углам. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Так как острые углы равнобедренных прямоугольныхтреугольников равны 45º, то по этому признаку подобны: 5. любые два равнобедренных прямоугольных треугольника .---------------- 2.Треугольники АВС и AMN - равнобедренные. Периметр треугольника AMN равен 320 см, АВ=16 см, АМ=80 см. Найдите площадь треугольника АВС. Задача не совсем корректна. Приходится по теме вопроса догадываться, что данные треугольники подобны. В треугольнике АМN сторона АМ=80. Из неравенства треугольников следует, что только АМ может быть основанием этого треугольника, и АN=МN=(320-80):2=120 Тогда Вариант 1) АВ=16- основание меньшего треугольника k=АМ:АВ=80:16=5 ВС=АС=120:5=24 Высоту СН ∆ АВС найдем по т.Пифагора: СН=√(ВС²-ВН²)=√512=16√2 Ѕ∆ АВС=ВН*СН=8*16√2=128√2 см² или ≈181,02 см² Вариант 2) АВ=16 - боковая сторона меньшего треугольника. Тогда k=AM:BC=120:16=7,5 АС=80:7,5=32/3 Тогда СН=АС:2=16/3 Высота ВН=√(BC² -CH²)=√(9*256-256):9)=√(8*256:9)=√(2*4*256:3)=(32√2)/3 S ∆АВС=ВН*СН=(32√2)/3)*16/3 S ∆АВС=(32*16√2)/9 см² или ≈ 80,453 см²
1) Смежные углы в сумме дают 180°. Один 28°, другой 152°
2) При пересечении двух прямых получаются 2 вертикальных угла
(равны друг другу) и два смежных (в сумме 180°).
Углы равны 70°, 70°, 110°, 110°.
3) Если внешний угол равен 40°, то внутренний 180° - 40° = 140°.
Второй угол равен 30°, а третий 180° - 140° - 30° = 10°
4) В равнобедренном треугольнике медиана - она же биссектриса и высота.
Поэтому боковые стороны AB=BC, сторона BO общая, углы ABO=CBO.
По 2 признаку равенства треугольников (2 стороны и угол) эти треугольники равны.
5) Углы прямоугольного треугольника A = 90°, C = 15°, B = 75°.
Угол В делят на CBD = 15° и ABD = 60°.
Значит, угол ADB = 90° - 60° = 30°. Катет против угла 30° равен половине гипотенузы.
а) Значит, гипотенуза BD = AB*2 = 3*2 = 6 см.
б) Треугольник BDC - равнобедренный с углами B = C = 15°, D = 150°.
Стороны BD = DC = 6 см.
По правилу треугольника, сторона BC должна быть меньше суммы двух других сторон.
BC < BD + DC = 6 + 6 = 12 см.