Пусть пирамида имеет вершину S и в основании треугольник АВС.
Для простоты обозначим неизвестную сторону основания х.
Из точек С и В проведём к ребру АS перпендикуляры. В силу того, что грани АSC и АSВ одинаковы, эти перпендикуляры придут в одну точку К на ребре АS. Эти перпендикуляры равны: СК = ВК. Следовательно, треугольник СКВ - равнобедренный.
Мерой двугранного угла, образованного двумя боковыми гранями АSC и АSВ является линейный угол СКВ. Итак, уг. СКВ = 2φ
Из вершины К тр-ка СКВ опустим высоту КД(она же медиана, она же биссектриса) на сторону ВС.
В прямоугольном тр-ке СКД уг.СКД = φ. Половина СД стороны основания ВС равна = 0,5х или
0,5х = СK·sinφ.
В тр-ке АSC, являющемся боковой гранью, высоту СК можно найти из площади
S = 1/2 CK· AS
или поскольку ребро AS = a, то
S = 1/2 CK· а, откуда
СК = 2S/а.
Для другой боковой грани - тр-ка BSC, равного тр-ку АSC та же площадь
S = 1/2 SД· ВС или
S = 0,5 SД· х.
Из тр-ка СSД найдём SД
SД² = SC² - CД² или
SД² =а² - (0,5х)²
SД =√(а² - (0,5х)²)
Теперь пошли обратно по "жирной" цепочке
Подставим SД в S = 1/2 SД· х и получим
S = 0,5 √(а² - (0,5х)²)· х
S подставим в СК = 2S/а. Получим
СК = (х/а)·√(а² - (0,5х)²)
Наконец, подставим СК в 0,5х = СK·sinφ.
0,5х = [√(а² - (0,5х)²)· х/а]·sinφ.
Преобразуем и найдём х
х/(2sinφ) = (х/а)·√(а² - (0,5х)²)
1/(2sinφ) = (1/а)·√(а² - (0,5х)²)
а = 2sinφ·√(а² - (0,5х)²)
а² = 4sin²φ·(а² - (0,5х)²
а² = sin²φ·(4а² - х²)
а² - 4а² ·sin²φ·= - х²·sin²φ
а²(4sin²φ - 1) = х²·sin²φ
х = [а·√(4sin²φ - 1)]/sinφ - это и есть длина стороны основания
T.к. Диагонали относятся как 3\4, следовательно их половинки относятся также. Диагонали разделяют ромб на 4 равных между собой прямоугольных треугольника., катеты- это наши половинки диагоналей, которые относятс как 3\4. Обозначим одну часть за х. Тогда один катет=3х, второй =4х. А площадь этого треуг. в 4 раза меньше площиди ромба=24\4=6. Итак, у нас прямоуг треугольник с катетами 3х и 4х и площадью=6. А площадь прямоуг. треуг.=1\2произведения катетов. Получаем 0,5*3х*4х=6, т.е.6х*х=6, т.е.х*х=1, т.е. х=1
Cначало разберемся где будет висеть наша точка с1. Предположим что она лежит внутри внутри второй окружности. НО тогда с1с2=6 или с1с2<8. Или если она лежит на 2 дуге в пересечении,то оно не превышает сумму радиусов 8+6=14<20 что противоречит условию. То единственное положение для точки c1 вне круга на последнем пересечении. Разберемся с положением точки с2: Если она располагается на 2 или первой дуге пересечений то c1c1<=6 что не подходит. То с2 находится на 1 пересечении слева. Проведем вс общую хорду AB. Проведем радиусы в каждой окружности к точкам A и B. То треугольники O2AO1 и O2BO1 равны по 3 сторонам. Откуда углы BO2O1=AO2O1. ТО выходит что O1O2-биссектриса равнобедренного треугольника BO2A. То она медиана и высота к хорде AB. (AS=BS) Ну дальше дело техники. На рисунке указаны углы a и b. И смежные им углы. AS=8*sina BS=6*sinb 8sina=6sinb sina=3/4 *sinb тк sin(180-Ф)=sinФ SAC1O1=1/2*36*sinb SBC2O2=1/2*64*3/4 *sinb Переумножим: SAC1O1*SBC2O2=8*3*18*sin^2b=336 sin^2b=336/8*3*18=7/9 cos^2b=1-7/9=2/9 cosb=√2/3. sin^2a=9/16 *sin^2b=7/16 cos^2a=1-7/16=9/16 cosa=3/4 O1O2=8*cosa+6cosb=8*3/4+6*√2/3=6(1+√2/3)=6*(3+√2)/3=2*(3+√2) ответ: 6+2√2 ответ неважный. Рекомендую проверить арифметику.
Пусть пирамида имеет вершину S и в основании треугольник АВС.
Для простоты обозначим неизвестную сторону основания х.
Из точек С и В проведём к ребру АS перпендикуляры. В силу того, что грани АSC и АSВ одинаковы, эти перпендикуляры придут в одну точку К на ребре АS. Эти перпендикуляры равны: СК = ВК. Следовательно, треугольник СКВ - равнобедренный.
Мерой двугранного угла, образованного двумя боковыми гранями АSC и АSВ является линейный угол СКВ. Итак, уг. СКВ = 2φ
Из вершины К тр-ка СКВ опустим высоту КД(она же медиана, она же биссектриса) на сторону ВС.
В прямоугольном тр-ке СКД уг.СКД = φ. Половина СД стороны основания ВС равна = 0,5х или
0,5х = СK·sinφ.
В тр-ке АSC, являющемся боковой гранью, высоту СК можно найти из площади
S = 1/2 CK· AS
или поскольку ребро AS = a, то
S = 1/2 CK· а, откуда
СК = 2S/а.
Для другой боковой грани - тр-ка BSC, равного тр-ку АSC та же площадь
S = 1/2 SД· ВС или
S = 0,5 SД· х.
Из тр-ка СSД найдём SД
SД² = SC² - CД² или
SД² =а² - (0,5х)²
SД =√(а² - (0,5х)²)
Теперь пошли обратно по "жирной" цепочке
Подставим SД в S = 1/2 SД· х и получим
S = 0,5 √(а² - (0,5х)²)· х
S подставим в СК = 2S/а. Получим
СК = (х/а)·√(а² - (0,5х)²)
Наконец, подставим СК в 0,5х = СK·sinφ.
0,5х = [√(а² - (0,5х)²)· х/а]·sinφ.
Преобразуем и найдём х
х/(2sinφ) = (х/а)·√(а² - (0,5х)²)
1/(2sinφ) = (1/а)·√(а² - (0,5х)²)
а = 2sinφ·√(а² - (0,5х)²)
а² = 4sin²φ·(а² - (0,5х)²
а² = sin²φ·(4а² - х²)
а² - 4а² ·sin²φ·= - х²·sin²φ
а²(4sin²φ - 1) = х²·sin²φ
х = [а·√(4sin²φ - 1)]/sinφ - это и есть длина стороны основания