По геометрии: Проведите прямую, отметьте на ней точки A, B, C, D. Среди лучей AB, BD, CA, DA, AC, BA, AD, CB, CD, найдите а) совпадающие лучи б) дополнительные лучи.
Думаю, здесь имеется в виду, что сей угол равен 90 градусов. Почему так считаю:
1. Для начала заметим, что прямые ДО и ВС скрещивающиеся. Также по условию дано, что треугольник АВС в основании является равносторонним.
2. Чтобы найти угол между скрещивающимися прямыми, нужно построить параллельно одной из них такую вс прямую, чтобы она пересекала вторую из пары скрещивающихся. В нашем случае можем провести параллельно ВС через центр основания О, некую прямую, назовём её условно буквой х.
3. Прямая х и прямая ДО пересекутся в точке О, потому что это общая точка для обеих прямых. Теперь смотрим на угол между ними. Это будет прямой угол, потому что проекция ДО на плоскость основания - есть высота треугольника АВС.
4. Отсюда делаю вывод: угол между прямыми х и ДО равен 90 градусов, следовательно между ВС и ДО тоже 90 градусов.
1) В прямоугольнике все углы прямые. Пусть один острый угол pk°, второй qk°. pk+qk=90 k=90/(p+q) Один угол 90p/(p+q) градусов, второй 90q/(p+q) градусов. Стороны прямоугольника d·cos(90p/(p+q) ) и d·cos(90q/(p+q) )
Р=2·(d·cos(90p/(p+q) ) + d·cos(90q/(p+q) ))
2) Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О. Проведем высоту через точку пересечения диагоналей. Высота делит основания равнобедренной трапеции пополам. Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD равен (h-x). BC/2=x·tg((180°-α)/2) AD/2=(h-x)· tg((180°-α)/2)
Объяснение:
Дополнительные лучи СВ и СД - различные лучи одной и той же прямой, имеющие общее начало С
ВА и ВД дополнительные лучи имеющие общее начало В
СА и СД - дополнительные лучи имеющие общее начало С
Лучи совпадают, если они лежат на одной прямой и имеют общее начало и ни один из них не является продолжением другого луча.
СА и СВ совпадающие
АВ и АД и АС совпадающие