М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
alanasia2004
alanasia2004
30.11.2022 18:53 •  Геометрия

Точки наиваються ... відносно прямої, якщо ця пряма є серединним перпендикуляром до відрізка, що утворюють ці точки.​

👇
Ответ:
angelok8408
angelok8408
30.11.2022
Ф Ахахахахахахахахаха Ахахахахахахахахаха
4,4(91 оценок)
Открыть все ответы
Ответ:
Обозначим параллелограмм АОСР, где диагонали АС и ОР пересекаются в точке В. Найдем координаты точек С и Р.

 Точка С(3;4)

 Точка P(0;4)
Точки А и О лежат на оси Ох, т е уравнение прямой АО у=0, С и Р лежат на прямой у=4, т е уравнение прямой РС у=4.
Точки А и Р лежат на прямой у=kx+b,  для A:  0=-3k+b,  для P:  4=0*k+b , отсюда  b=4,  k=4/3, т е уравнение прямой АР  у=4/3х+4.
Точки О и С лежат на прямой у=kx+b,  для О:  0=0*k+b,  для С:  4=3*k+b , отсюда  b=0,  k=4/3, т е уравнение прямой ОС  у=4/3х.
ответ:  уравнения сторон параллелограмма у=0,  у=4,   у=4/3х+4,  
4,6(15 оценок)
Ответ:
oleksandrskorbat
oleksandrskorbat
30.11.2022
Равнобедренного может? Если да , то вот .
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
4,5(8 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ