Обозначим параллелограмм АОСР, где диагонали АС и ОР пересекаются в точке В. Найдем координаты точек С и Р.
Точка С(3;4)
Точка P(0;4) Точки А и О лежат на оси Ох, т е уравнение прямой АО у=0, С и Р лежат на прямой у=4, т е уравнение прямой РС у=4. Точки А и Р лежат на прямой у=kx+b, для A: 0=-3k+b, для P: 4=0*k+b , отсюда b=4, k=4/3, т е уравнение прямой АР у=4/3х+4. Точки О и С лежат на прямой у=kx+b, для О: 0=0*k+b, для С: 4=3*k+b , отсюда b=0, k=4/3, т е уравнение прямой ОС у=4/3х. ответ: уравнения сторон параллелограмма у=0, у=4, у=4/3х+4,
Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.