Снизу
Объяснение:
Cм рисунок в приложении. Проведем высоты вы трапеции из вершин верхнего основания. Обозначим нижнее основание и боковые стороны х
Из прямоугольных треугольников находим катет
Катет равен гипотенузе х, умноженной на косинус 65°
(если бы 60°, то косинус 60° равен 0,5)
Тогда нижнее основание состоит их трех отрезков:
х·cos 50°+x+x·cos 50°=15 ⇒ x=15:(2cos 50°+`1)
cos 50°≈ 0,423
0,423х+х+0,423х=15
1,846 х=15
х≈8,67
Р≈8,67+8.67+8.67+15=42,01
Если все-таки 50° угол, то все гораздо проще:
0,5х+х+0,5х=15
2х=15
х=8
Р=8+8+8+15=40
Бесконечно много.
Объяснение:
Предположим, что таких сфер конечное количество. Выберем сферу с самым большим радиусом R. Пусть расстояние от центра сферы до плоскости окружности равно d. Тогда расстояние от центра этой сферы до любой из точек окружности равно R=√(r²+d²)
Восстановим перпендикуляр OH к плоскости окружности из ее центра O так, что OH=d1>d. Тогда расстояние от H до любой точки окружности равно R1=√(d1²+r²). Построим сферу с центром в H и радиусом R1. Из наших расчетов эта сфера будет проходить через исходную окружность. Осталось заметить, что R1=√(d1²+r²)>√(d²+r²)=R по построению, т.е. мы построили сферу, проходящую через данную окружность, с радиусом, большим R, несмотря на то, что по предположению это была сфера с самым большим радиусом, и при этом проходящая через данную окружность. Значит наше предположение неверно и таких сфер бесконечное количество.