Объяснение:
Сумма смежных углов равен 180 :
<МFN=180-<NFP=180-155=25
<N=90-<MFN=90-25=65
<F=<MFN=25
ответ : <F=25 <N=65
Сначала решение, а потом немного пояснений :)))
Расстояние от С до плоскости равно расстоянию от С до прямой АВ, умноженному на синус угла 45°, высота треугольника АВС, проведенная из вершины С, равна 12, поэтому ответ 6√2;
Теперь пояснения :)
1. Отрезок, перпендикулярный плоскости СК (точка К - проекция точки С на плоскость), высота СН треугольника АВС и её проекция на плоскость КН образуют прямоугольный треугольник СКН в плоскости, перпендикулярной АВ (так как 2 прямые - СК и СН перпендикулярны АВ). Поэтому СК = СН*sin(Ф); где Ф - линейный угол двугранного угла между плоскостями, то есть 45°;
2. Чтобы найти СН - высоту треугольника АВС, можно сосчитать площадь АВС по формуле Герона (получится 84) и разделить на (14/2), получится 12. Однако есть найти СН, не прибегая к вычислениям. Дело в том, что треугольник со сторонами 13,14,15 "составлен" из двух Пифагоровых треугольников (прямоугольных треугольников с целыми длинами сторон) 9,12,15 и 5,12,13 так, что катет 12 у них "общий", а катеты 9 и 5 вместе образуют сторону 14. Что означает, что в треугольнике 13,14,15 высота к стороне 14 равна 12.
угол F = 25°
угол N = 65°
Объяснение:
угол MFP - развернутый и равен 180°
угол MFN = угол MFP - угол NFP = 180° - 155° = 25°
угол M - прямой и равен 90°
угол N = 180° - угол M - угол MFN = 180 - 90 - 25 = 65°