У равнобедренного треугольника две боковые стороны равны. Примем основание за х см, тогда каждая боковая сторона = 2х. Составим уравнение: х +2х + 2х = 20 5х = 20 х = 4 2х = 8 ответ: 4см -основание треугольника; по 8 см - боковые стороны.
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
Примем основание за х см, тогда каждая боковая сторона = 2х.
Составим уравнение:
х +2х + 2х = 20
5х = 20
х = 4
2х = 8
ответ: 4см -основание треугольника; по 8 см - боковые стороны.