Объяснение:
Радиус окружности, описанной около треугольника, можно найти по формуле:
R = abc / 4S, где R - радиус описанной окружности, a, b и c - стороны треугольника, S - площадь треугольника.
Площадь произвольного треугольника, у которого известны все три стороны, можно найти по формуле Герона:
S = √(p(p - a)(p - b)(p - c)), где р - полупериметр треугольника.
р = (a + b + c) / 2;
Так как у нас известно что вершины это середины сторон, тогда стороны большого треугольника 20, 26, 34 см соответственно.
р = (20 + 26+ 34) / 2 = 40(см).
S = √(40(40- 34)(40- 26)(40- 20)) = √(40*6*14*20) = √67200 = 40√42 (см квадратных).
Подставим известные значения в формулу и найдем радиус описанной окружности:
R = 20*26*34/ 4*40√42= 221/ 2√42 = 221√42 / 84 (см).
ответ: R = 221√42 / 84 см.
AB = 5√2; OA = OB - по условию
ΔOAB - прямоугольный равнобедренный
Теорема Пифагора
OA² + OB² = AB² ⇒ 2OA² = AB²
2OA² = (5√2)²
2OA² = 50 ⇒ OA² = 25 ⇒ OA = OB = 5
Координаты точек А (0; 5), В (5; 0)
Уравнение прямой y = kx+b
Для точки А: 5 = k*0 + b; b = 5
Для точки В: 0 = k*5 + b; 5k = -b; k = -b/5;
k = -5/5 = -1
Уравнение прямой для первой четверти y = -x + 5
Уравнение прямой для второй четверти y = x + 5
Уравнение прямой для третьей четверти y = -x - 5
Уравнение прямой для четвертой четверти y = x - 5