пусть начальный сплав весит а кг и в нем х кг серебра
В этот сплав добавили 3 кг серебра, значит в новом сплаве его стало х+3 кг, а вес нового сплава стал а+3 кг
новый сплав стал содержать 90 процентов от веса нового сплава
про серебро составлю тогда уравнение
x+3=0.9(a+3)
x=0.9a-0.3 -первое уравнение будущей системы 2 уравнений с 2 неизвестными
третий сплав получается из начального с добавлением 2 кг сплава, содержащего 90 % серебра, это к х прибавляется 2*0.9=1.8 кг серебра
тогда это можно записать как х+1.8 кг серебра в третьем славе
"получают сплав с 84% массовой долей серебра"-третий сплав стал весом а+2 кг, а серебра в нем 0.84(a+2)
приравняю оба эти выражения
x+1.8=0.84(a+2)-второе уравнение системы
x=0.84a+1.68-1.8=0.84a-0.12
приравнивая оба выражения х
0.9a-0.3=-0.84a-0.12
0.06a=0.18
a=3
тогда серебра в нем 0.9*3-0.3=2.7-0.3=2.4 кг
2.4/3*100=80% серебра в начальном сплаве или 2.4 кг
1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²