Расположим трапецию так, чтобы основания её были вертикальны. То есть меньшая боковая сторона АД станет основанием фигуры вращения АВСД. АВ=10, СД=15, ВС=13. Проведём ВК параллельно АД. Наглядно видно, что тело вращения вокруг вертикальной оси ДС состоит из конуса (проекция СВК) и цилиндра(проекция АВКД). Полная поверхность тела вращения состоит из боковой поверхности конуса+боковая поверхность цилиндра + площадь круга основания. Радиус R у всех этих фигур общий . КС=ДС-АВ=15-10=5. R=корень из(ВС квадрат -КС квадрат)= корень из(169-25)=12. Тогда полная поверхность тела вращения S=Sосн.+Sцил.+Sкон.=пи* Rквадрат+ 2пи *R*h+пи*R*l=пи*(R квадрат+2R*10+ R*13)=пи*(144+240+156)=540 *пи. Здесь l=ВС=13, h=АВ=10.
Схема здесь простая. Как указано в задании , так и строим. Оложим все отрезки и соединим точки А, L,Е одной прямой. Рассмотрим треугольники LFE и KFM. У них углы KFM и LFE равны , LF=FM, KF=FE(по условию). Следовательно эти треугольники равны. Против равных углов в треугольнике лежат равные стороны и наоборот. Отсюда угол LEF=углуFKM. Значит LE параллельна КМ. Аналогично доказываем параллельность AL и KM (трекгольники ALD и KDM). То есть получили - отрезки AL и EL параллельны одной прямой KM, и точка L у них общая. Значит отрезки AL и LE являются отрезками одной прямой АЕ и точка L лежит на ней. Поскольку через три точки можно провести прямую если только они все лежат на этой прямой.