ABCDS - правильная пирамида.
Значит АВСD - квадрат. <SAO=60° (дано), <ASO=30°, так как треугольник АSO - прямоугольный (SO- высота пирамиды).
АО=12:2=6 см (как катет, лежащий против угла 30°).
Треугольник АОD - прямоугольный (АС и ВD - диагонали квадрата и AO=OD, а <AOD=90°).
Тогда АD=√(2*AO²)=АО√2 или AD=6√2. АН=3√2 см.
Апофема (высота грани) SH=√(AS²-AH²)=√(144-18)=3√14 см.
Площадь основания равна AD²=72 см².
Площадь грани равна (1/2)*SH*AD или
Sг=(1/2)*3√14*6√2 или 18√7.
Sполн=So+4*Sг=72+72√7=72(1+√7) см².
ответ: S=72(1+√7) см².
1. равнобедренный треугольник это треугольник у которого 2 стороны равны.
2Теорема о свойствах равнобедренного треугольника. В любом равнобедренном треугольнике: 1) углы при основании равны; 2) медиана, биссектриса и высота, проведенные к основанию, совпадают. Доказательство. Оба эти свойства доказываются совершенно одинаково. Рассмотрим равнобедренный треугольник АВС, в котором АВ = ВС. Пусть ВВ1 - биссектриса этого треугольника. Как известно, прямая BB1 является ось симметрии угла АВС. но в силу равенства AB = BC при той симметрии точка А переходит в С. Следовательно, треугольники ABB1 и CBB1 равны. Отсюда все и следует. Ведь в равных фигурах равны все соответствующие элементы. Значит, ÐBAB1 = ÐBCB1. Пункт 1) доказан. Кроме этого, AB1 = CB1, т. е. BB1 - медиана и ÐBB1A = ÐBB1C = 90°; таким образом, BB1 также и высота треугольника ABC.
3АС=АВ+ВС=34+12=46 либо же
АС=АВ-ВС= 34-12=22