это радиус легко найти он равен высоте равен диаметр вписанного круга. Из точки пересечения диагоналей. диагонали делет на четыре равных прямоугольных треугольника раз один угол 60°то другой 120 ° диагонали ромба является биссектрисами его внутренных углов. Поэтому диагонали делят ромб на треугольники с углами 90° 60° 30° против угла в 30° лежит катет равным половине стороны ромба которая в этом треугольника является гипотенузой .
Поэтому катет равен 5 см . Высоту треугольника проведенную к стороне ромба ищем из треугольника с гипотенузы 5 см и противолежащим углом в 60°против гипотенузы лежит прямой угол равна 5 sin 60°
5× 3/2 площадь круга равна 25×3/4=75 п/4=18/75 /см/
По моему всё
Даны вершины треугольника А(-2; 1), В(2; 4), С((-2;-2).
1) Векторы АВ = (4; 3), ВС = (-4; -6), АС = (0; -3).
Уравнения (канонические):
АВ: (х + 2)/4 = (у - 1)/3.
ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
ответ: S = (1/2)*3*4 = 6.