Сравним координаты векторов АВ и DC Знак вектора не стоит! AB ={0-1; 2-3; 4-2} = {-1;-1;2 }. DC ={1-2; 1-2; 4-2} = {-1; -1; 2}. Векторы равны, значит эти отрезки параллельны и равны, а поэтому АВСD - параллелограмм. Правда,остается шанс, что все точки лежат на одной прямой, но это проверим вычисляя косинус угла А. Угол А образован векторами АВ и АD. AB ={ -1; -1; 2}. AD ={2-1; 2-3: 2-2} = {1; -1;0}. Векторы не коллинеарны, значит точки не лежат на одной прямой. Для вычисления косинуса применим скалярное произведение векторов. cosA =(AB*AD)/(|AB|*|AD|)= (-1*1 + (-1)*(-1) + 2*0) / (√(1+1+4) * √(1+1+0))=0/(√6*√2) =0. Если косинус равен 0, то угол А = 90°.
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
AB ={0-1; 2-3; 4-2} = {-1;-1;2 }.
DC ={1-2; 1-2; 4-2} = {-1; -1; 2}.
Векторы равны, значит эти отрезки параллельны и равны, а поэтому АВСD - параллелограмм. Правда,остается шанс, что все точки лежат на одной прямой, но это проверим вычисляя косинус угла А.
Угол А образован векторами АВ и АD.
AB ={ -1; -1; 2}.
AD ={2-1; 2-3: 2-2} = {1; -1;0}. Векторы не коллинеарны, значит точки не лежат на одной прямой. Для вычисления косинуса применим скалярное произведение векторов.
cosA =(AB*AD)/(|AB|*|AD|)=
(-1*1 + (-1)*(-1) + 2*0) / (√(1+1+4) * √(1+1+0))=0/(√6*√2) =0.
Если косинус равен 0, то угол А = 90°.