Подобные задачи ("стороны или углы пропорциональны числам") решаются следующим образом: 1) Вводится переменная х, обозначающая одну часть (пишется "пусть х -одна часть") 2) Стороны треугольника записываются через эту переменную: 3х, 4х, 6х ( то есть в каждой стороне треугольника содержится столько-то этих частей) 3) Стороны складываются, образуя периметр. Получаем уравнение: 3х + 4х+ 6х = 39 13Х = 39 х =3 4) Нам нужна меньшая сторона, то есть та сторона, которая содержит меньше всего таких частей. Она равна 3х =3*3 =9
32,475 ед²
Объяснение:
Дано: КМРТ - трапеция, КМ=РТ, КТ=10; ∠К=∠Т=60°. КР⊥РТ Найти S(КМРТ).
ΔКРТ - прямоугольный, ∠Т=60°, ∠РКТ=90-60=30°, т.к. сумма острых углов прямоугольного треугольника 90°
РТ=1\2 КТ=10:2=5 по свойству катета, лежащего против угла 30°
Проведем высоты МС и РН, рассмотрим ΔТРН - прямоугольный,
∠ТРН=90-60=30°, значит ТН=1/2 РТ=5:2=2,5.
По теореме Пифагора РН=√(РТ²-ТН²)=√(25-6,25)=√18,75≈4,33
ΔКМС=ΔТРН по катету и гипотенузе, значит КС=ТН=2,5;
МР=СН=10-2,5-2,5=5.
S=(МР+КТ):2*РН=(5+10):2*4,33≈32,475 ед²