Объяснение:
1) У равнобедренного треугольника боковые стороны равны. Пусть боковая сторона будет - х, тогда основание : 1,6*х
Периметр треугольника равен сумме всех его сторон, поэтому
х+х+1,6х=36
3,6х=36
х=36:3,6
х=10 (см) - боковая сторона каждая
1,6х=1,6*10=16 (см) - основание
Проверяем: Р=10+10+16=36(см)
2)У равнобедренного треугольника боковые стороны равны, а периметр равен сумме всех его сторон
Если одна из сторон равна 12 см, то сумма двух других: 40-12=26 (см)
Если это боковые стороны, то каждая из них равна: 26:2=13 (см)
Однако, если 12 см составляет боковая сторона, то основание
равно: 40-(12+12)=16 (см)
При этом, треугольник может быть как со сторонами 12см,13см,13см,
так и со сторонами: 12см, 12см, 16см , т.к. сумма большей из сторон меньше суммы двух его других сторон (13∠12+13, 16∠12+12), а как известно одна сторона треугольника не может быть больше суммы двух других его сторон
BC = CM = LB = BN и BS = SA = AN = ND = DG, т.к трапеция равнобоковая и отрезки касательных, проведённые из одной точки равны.
Опустим два перпендикуляра к большему основанию AD. Обозначим их за BE т FC. Внутри трапеции образовался прямоугольник BEFC => BC = EF = 2m. Тогда AE + FD = 2n - 2m.
AB = CD
BE = CF
Угол AEB = углу DFC = 90°
Значит, треугольник равны по катеты и гипотенузе.
Из равенства треугольников => AE = FD. Значит, AE = FD = 1/2(AE + FD) = 1/2•(2n - 2m) = n - m.
По теореме Пифагора:
BE = √(m + n)² - (n - m)² = √m² + 2mn + n² - n² + 2mn - m² = √4mn = 2√mn.
Значит, высота трапеции равна 2√mn.
Площадь S трапеции равна:
S = 1/2(BC + AD)•EB
S = (m + n)•2√mn.