Есть пирамида АВСД, гда АВС - основание, ДО - высота пирамиды. Из вершины Д к стороне АВ проведем апофему ДЕ.
В равностороннем треугольнике АВС все высоты пересекаются в точке О. Рассмотрим прямоугольный треугольник АЕО: угол ОАЕ=60/2=30. ОЕ - катет, лежащий против угла 30 градусов, примем его за х, значит ОА=2ОЕ=2х
АЕ^2=ОA^2-ОE^2=(2х)^2-х^2=3х^2
но АЕ=АВ/2=1
значит 3х^2=1, х=ОЕ=1/корень из 3.
ОА=2х=2/корень из 3.
СЕ=ОС+ОЕ=ОА+ОЕ=3/корень из 3
Из прямоугольного треугольника ОДЕ: угол ОДЕ=180-ДОЕ-ОЕД=180-90-60=30.
ОЕ - катет, лежащий против угла 30 градусов. Значит ДЕ=2ОЕ=2/корень из 3
ОД^2=ДЕ^2-ОE^2=(2/корень из 3)^2-(1/корень из 3)^2 =1, ОД=1
S=1/2*АВ*СЕ=1/2*2*3/корень из 3=3/корень из 3
V=1/3*S*h=1/3* 3/корень из 3*1=1/корень из 3
Объяснение:
Биссектриса угла В и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую АВ в точках М и К соответственно. Докажите, что отрезок МК равен и перпендикулярен диагонали прямоугольника.
2. В равнобедренном треугольнике АВС на боковой стороне ВС отмечена точка М так, что отрезок СМ равен высоте треугольника, проведенной к этой стороне, а на боковой стороне АВ отмечена точка К так, что угол КМС – прямой. Найдите угол АСК.
3. Из листа бумаги в клетку вырезали квадрат 2×2. Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.
4. В трапеции ABCD: AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из Н на АС, проходит через середину BD.
5. Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника АВС, М – середина АВ. Окружности, описанные около треугольников AMA1 и BMB1 пересекают прямые АС и ВС в точках К и L соответственно. Докажите, что К, М и L лежат на одной прямой.
6. Один треугольник лежит внутри другого. Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.
10–11 класс
1. AD и BE – высоты треугольника АВС. Оказалось, что точка C', симметричная вершине С относительно середины отрезка DE, лежит на стороне AB. Докажите, что АВ – касательная к окружности, описанной около треугольника DEC'.
2. Прямая а пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от а и не пересекающих a. Верно ли, что а перпендикулярна α?
3. Дана неравнобокая трапеция ABCD (AB||CD). Произвольная окружность, проходящая через точки А и В, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.
4. Докажите, что любой жесткий плоский треугольник T площади меньше четырёх можно просунуть сквозь треугольную дырку Q площади 3.
5. В выпуклом четырехугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC. (ответ выразите в градусах.)
6. Пусть AA1, BB1 и CC1 – высоты неравнобедренного остроугольного треугольника АВС; окружности, описанные около треугольников АВС и A1B1C, вторично пересекаются в точке Р, Z – точка пересечения касательных к описанной окружности треугольника АВС, проведённых в точках А и В. Докажите, что прямые АР, ВС и ZC1 пересекаются в одной точке.