1) верно (по признаку параллельных прямых). Если внутренние накрестлежащие углы равны, то прямые параллельны 2) неверно. Диагональ трапеции делит её на два треугольника, одна сторона которых - общая (диагональ), две же другие - это боковые стороны (которые могут быть равны друг другу в случае, если трапеция равнобокая) и последняя пара сторон - это основания трапеции, которые друг другу не равны у трапеции никогда. Следовательно, полученные треугольники никак нельзя наложить друг на друга, чтобы они совпали, поэтому полученные треугольники не равны между собой. 3) верно (по определению квадрата). Квадрат - это ромб, у которого есть прямой угол.
1) Рассмотрим 2 треугольника: АВВ1, АОС1: - оба прямоугольные - уголВАО общий известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или: уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2), очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем: уголАВС+уголВАО=уголАОС+уголВАО, уголАВС=уголАОС, ч.т.д
или вот так: уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1)) Тогда π/2-уголВСС1=π/2-уголОСВ1, а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить: уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
2) неверно. Диагональ трапеции делит её на два треугольника, одна сторона которых - общая (диагональ), две же другие - это боковые стороны (которые могут быть равны друг другу в случае, если трапеция равнобокая) и последняя пара сторон - это основания трапеции, которые друг другу не равны у трапеции никогда. Следовательно, полученные треугольники никак нельзя наложить друг на друга, чтобы они совпали, поэтому полученные треугольники не равны между собой.
3) верно (по определению квадрата). Квадрат - это ромб, у которого есть прямой угол.