Боковые стороны, значит, равны по 4 см, т.к. равны у равнобедренного треугольника, и синус 120 градусов равен синусу 60 градусов, равен √3/2, тогда площадь равна половине произведения боковых сторон на синус угла между ними.
(4*4*√3/2)/2=4√3/см²/, найдем теперь по теореме косинусов основание равнобедренного треугольника, учитывая , что косинус 120 град. равен -1/2, основание равно
√((4²+4²-2*4*4*(-1/2))=4√3, значит, радиус описанной окружности равен а*в*с/4S=(4*4*4√3)/(4*4√3)=4/см По теореме синусов а/sinα=2*R
R=a/2sinα, найдем угол α при основании и подставим в эту формулу.
Углы при основании равны, поэтому α=(180°-120°)/2=30°
Итак, радиус равен 4/(2sin30°)=4/(2*1/2)=4/cм/
1) так...построим этот треугольник...опустим высоту АД на гипотенузу BC ...получается еще один прямоугольный треугольник АБД, отсюда найдем...проекцию большего катета на гипотенузу400 = 144 + х (квадрат), х = 16..теперь у нас высота которая дана нам..это 12 см по формуле H(квадрат) = ХУ, где х и у проекции катетов на гипотенузу..так как мы одну из них нашли (16 см) ...подставляем под формулу..найдем отсюда вторую проекцию 144 = 16*у, у = 9..
теперь у нас есть гипотенуза от треугольника АБС, отсюда по теореме пифагора найдем катет АС..625 = 400 + АС(квадрат) , АС = 15 см.
СОS C = прилежащий катет / на гипотенузу...отсюда..COS C = 15/25 = 3/5.
2) так как диагональ БД перпендикулярна стороне АД, образовался прямоугольный треугольник ..и так как КОСИНУС УГЛА А = прилежащий катет /на гипотенузу..то отсюда COS 41 = x/12 , х = 12 * cos 41...подставим в формулу для нахождения площади параллелограмма АБСД...= S = a * b * sin a, а и b стороны, синус угла А это угол между сторонами...отсюда получаем S = 12* 12* sin41 *cos 41 = 72 * sin 82
А-20°, В-60°, С-100°
Объяснение:
20+40=60
20+60=80
180-80=100