Длины сходных сторон двух подобных треугольников равны 6м и 18 м. Площадь меньшего из подобных треугольников равна 32м2. Найдите площадь большего из подобных треугольников
2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.
AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.
3).
AB+AC+BC=34 см. (периметр)
AB=AC (боковые стороны)
BC (основание) =АВ+2 см= АС+ 2 см
BC+ (BC + 2 см)+(ВС+2 см) =34 см
3 ВС=30 см
ВС= 10 см
АВ=АС=10 см +2 см= 12 см
4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)
5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.
∠В=∠АBD+∠CBD
∠D=∠ADB+∠CDB
А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.
6). Сумма острых углов прямогульного треугольника равна 90°.
∠A+∠B=90°
∠B=∠A-60° по условию
∠A+∠A-60°=90°
2∠A=150°
∠A=75°
∠B=∠A-60°=75°-60°=15°
7). Найдем ∠B. Сумма углов треугольника равна 180°.
∠А+∠В+∠С=180°
70°+55°+∠B=180°
∠B=180°-125°
∠B=55°
То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.
7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
Здравствуйте!
1).
∠1+∠2=180° смежные
∠1=2∠2 по условию
2∠2+∠2=180°
3∠2=180°
∠2=60°
∠1=2∠2=120°
2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.
AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.
3).
AB+AC+BC=34 см. (периметр)
AB=AC (боковые стороны)
BC (основание) =АВ+2 см= АС+ 2 см
BC+ (BC + 2 см)+(ВС+2 см) =34 см
3 ВС=30 см
ВС= 10 см
АВ=АС=10 см +2 см= 12 см
4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)
5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.
∠В=∠АBD+∠CBD
∠D=∠ADB+∠CDB
А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.
6). Сумма острых углов прямогульного треугольника равна 90°.
∠A+∠B=90°
∠B=∠A-60° по условию
∠A+∠A-60°=90°
2∠A=150°
∠A=75°
∠B=∠A-60°=75°-60°=15°
7). Найдем ∠B. Сумма углов треугольника равна 180°.
∠А+∠В+∠С=180°
70°+55°+∠B=180°
∠B=180°-125°
∠B=55°
То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.
7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
∠С+∠МBC=90°
55°+∠MBC=90°
∠MBC=35°
∠ABC=∠ABM+∠MBC
55°=∠ABM+35°
∠ABM=20°