1)Решаем систему уравнений 2)Составить уравнение окружности с центром в точке А(4;5),которая касается прямой. Прямая не указана. Поэтому неизвестен радиус (х-4)²+(у-5)²=R² 3) Точки пересечения окружности х²+у²=9 с осью абсцисс : у=0 ⇒ х²+0²=9 ⇒х²=9 ⇒ х=-3 или х=3 (-3;0) и (3;0) с осью ординат: х=0 ⇒ у²=9 ⇒ у=-3 или у =3 (0;-3) и (0;3) 4) Запишем уравнение прямой 3х-2у+5=0 в виде у= kx+b 3х-2у+5=0 ⇒ Параллельные прямые имеют одинаковые угловые коэффициенты. Угловой коэфиициент прямой Уравнение всех прямых параллельных прямой имеет вид Чтобы найти значение параметра b принимаем во внимание тот факто, что прямая проходит через точку (-2;2) х=-2 у=2 Подставим в выражение b=2+3=5 ответ. 5) х²+у²-4х+2у+1=0 Чтобы найти центр окружности выделим полные квадраты: х²-4х+у²+2у+1=0 Прибавим 4 слева и справа х²-4х+4+у²+2у+1=4 (х-2)²+(у+1)²=4 Координаты центра окружности (2; -1) Уравнение прямой имеет вид у=kx+b Точка (1;2) принадлежит прямой, её координаты удовлетворяют уравнению 2=k·1+b (*) Центр окружности (2;-1) принадлежит прямой, координаты удовлетворяют уравнению -1=k·2+b (**) Решаем систему двух уравнений (*) и (**): Вычли из первого уравнения второе ответ. у=-3x-1
Сподсчётами всё плохо что нашла то можно так: уравнение прямой, проходящей через две данные точки, имеет вид (у - у0) / (у1 - у0) = (х - х0) / (х1 - х0) подставив координаты точек, будем иметь (у - 5) / (11 - 5) = (х - 1) / (-2 - 1) (у - 5) / 6 = (х - 1) / (-3) -3(у - 5) = 6(х - 1) -3у + 15 = 6х - 6 6х + 3у - 21 = 0 2х + у - 7 = 0 - это уравнение прямой, проходящей через точки m(1; 5) и n(-2; 11). у = - 2х + 7 можно еще так: уравнение прямой имеет вид у = kx + b поставим координаты данных точек. получим 5 = k + b 11 = -2k + b вычитая из первого равенства второе, будем иметь -6 = 3k, отсюда k = -2. 5 = -2 + b, отсюда b = 7 подставив значения k и b в уравнение прямой, получим у = -2х + 7 ответ. у = -2х + 7ня
Если треугольник ABC, основание АС