Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
1) Пусть a и b - два данных вектора. Если вектор р представлен в виде p=xa+yb, где х и у -некоторые числа, то говорят, что вектор р разложен по векторам a и b. Числа х и у называются коэффициентами разложения. 2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат. Для координат векторов справедливы следующие свойства: 1. Каждая координата суммы векторов равна сумме соответствующих координат. 2. Каждая координата разности векторов равна разности соответствующих координат. 3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. 4. Каждая координата вектора равна разности соответствующих координат его конца и начала.
Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.