Вообще, это надо рисовать, иначе нифига непонятно (ну и про учебник присоединюсь к Эго Фризу)
Итак, что мы имеем: треугольник АВС, где угол А=90 градусов, и высота АD делит его на два прямоугольных треугольника.
Начнем с того, что попроще: треугольник ADB (угол D=90 градусов), катет AD=12, гипотенуза АВ=20, по теореме Пифагора 20^2=12^2+DB^2
Таким образом, сторона DB=16
Теперь рассмотрим второй треугольник, получившийся при делении большого треугольника высотой:
CDA, где угол D =90 градусов.
Катет AD=12, катет DC=X, гипотенуза AC=Y
По все той же теореме Пифагора получаем:
Y^2=12^2+X^2
Теперь рассмотрим исходный треугольник АВС
Катет АВ=20, катет АС=Y (смотри выше), гипотенуза СВ=X+16
По теореме Пифагора получаем:
20^2+Y^2=(X+16)^2 => Y^2=X^2+32X+256-400 => Y^2=X^2+32X-144
подставляем в уравнение Y^2=12^2+X^2 выраженное значение Y, получаем:
X^2+32X-144=12^2+X^2
32X=288
X=9
Таким образом, гипотенуза ВС=16+9=25
Катет АС=15
Косинус угла С равен отношению прилежащего катета к гипотенузе, т.е. cos C= AC/CB=15/25=3/5
См. Доказательство
Объяснение:
Задание:
Доказать, что радиус окружности, вписанной в правильный треугольник, равен половине радиуса описанной окружности
Доказательство:
1) Пусть:
a - сторона правильного треугольника;
h - его высота;
r - радиус окружности, вписанной в треугольник;
R - радиус описанной окружности.
2) Так как все углы правильного треугольника равны 60°, то его высота является катетом, который лежит против угла 60°, и равна произведению гипотенузы (стороны треугольника) на синуса угла 60°:
h = a · sin 60° = а√3/2.
2) В правильном треугольнике все высоты являются медианами и точкой пересечения медиан делятся на отрезки 2 : 1, считая от вершины:
2 · (а√3/2)/3 = а√3/3
1 · (а√3/2)/3 = а√3/6.
3) Первый из указанных отрезков является точкой пересечения срединных перпендикуляров, в силу чего является радиусом описанной окружности:
R = а√3/3
4) Второй отрезок (1/3 часть медианы) - радиус вписанной окружности:
r = а√3/6
5) Найдём, чему равно отношение r : R:
r : R = (а√3/6) : (а√3/3) = 1/6 : 1/3 = 1/6 · 3/1 = 3/6 = 1/2 - что и требовалось доказать.