или
Объяснение:
Расстояние между двумя точками и
находится по формуле
Поэтому
Уравнение прямой, проходящей через точки и
имеет вид
поэтому уравнение прямой
Угловой коэффициент найденной прямой
Так как стороны квадрата перпендикулярны, уравнения прямых, которые их выражают, должны удовлетворять условию перпендикулярности с заданной прямой (для перпендикулярных прямых с угловыми коэффициентами и
выполняется равенство
).
Тогда угловой коэффициент прямых, проходящих перпендикулярно отрезку равен
Значит все такие прямые имеют вид
Подставив координаты точки в полученное уравнение, найдем
Значит уравнение прямой, перпендикулярной и проходящей через точку
Аналогично подставив координаты точки получим
Значит уравнение прямой, перпендикулярной и проходящей через точку
Таким образом, точка лежит на прямой
т. е. ее координаты
А длина стороны
Пользуясь формулой расстояния между двумя точками (см. выше), получаем:
Вычисляем соответствующие значения y для этих точек: для для
Выходит, два возможных положения точки C — или
Проделываем ту же последовательность действий для определения координат точки Так как она лежит на прямой
то
тогда для а для
Значит возможные положения точки
—
или
из точки В к основанию АД опускаешь высоту, получается высота ВК.
из точки С опускаешь высоту к основанию АД, получается высота СМ.
ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14
АК=МД=14/2=7
В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы.
В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30
Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14