В основании правильной 4-ной пирамиды лежит квадрат. Пусть его диагонали равны 2х, тогда из условия равновеликости имеем: 1/2*2x*2x=1/2*2x*10, значит: 2x=10 <=> x=5. Площадь основания равна 2x^2=2*25=50. Ребро основания по теореме Пифагора равно кореньиз(25+25)=5*кореньиздвух. Боковое ребро по теореме Пифагора равно кореньиз (100+25)=5*кореньизтрех. Т.к. боковая грань это равнобедр.треуг.со сторонами 5*кореньизтрех, 5*кореньизтрех, 5*кореньиздвух, то площадь найдем как полупроизведение высоты на основание. Высота грани по теореме Пифагора равна кореньиз(125-12,5)=кореньиз(112,5)=7,5*кореньиздвух. Площадь грани равна 1/2*5*кореньиздвух*7,5*кореньиздвух=37,5. Полная поверхность равна 4*37,5+50=200. ответ: 200.
Чертежи смотрите во вложении.
✧Задание №1.✧
В прямоугольном равнобедренном треугольнике гипотенуза равна 12 см. Найти катеты этого треугольника.
Дано :
ΔАВС - равнобедренный и прямоугольный (∠В = 90°, АВ = СВ).
АС = 12 см.
Найти :
АВ = ?
СВ = ?
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы (теорема Пифагора).Пусть АВ = СВ = х. Тогда АВ² + СВ² = АС²
х² + х² = 12²
2х² = 144
х² = 72
х₁ =
- не удовлетворяет условию задачи, так как длины отрезков не могут выражаться отрицательными числами.
х₂ =
- подходит.
Тогда АВ = СВ = х =
см.
✧Задание №2.✧
Найти меньшую диагональ ромба, если его сторона равна 13 см, а большая диагональ ромба равна 24 см.
Дано :
Четырёхугольник ABCD - ромб.
ВС = 13 см, АС = 24 см.
Найти :
BD = ?
В ромбе диагонали точкой пересечения делятся пополам и взаимно перпендикулярны.Следовательно, АС⊥BD, ВО =
, CO =
=
*24 см = 12 см.
Рассмотрим ΔВОС - прямоугольный (∠ВОС = 90°).
По теореме Пифагора -
ВО² + СО² = ВС²
ВО² = ВС² - СО² = 13² - 12² = 169 - 144 = 25 ⇒ ВО =
см.
Тогда BD = 2*BO = 2*5 см = 10 см.
10 см.