Две прямые, перпендикулярные одной плоскости, параллельны. Через параллельные прямые можно провести плоскость. Получаем, что прямые AA1 и BB1 (и AB) лежат в одной плоскости. Точки A1, O, B1 принадлежат двум плоскостям, т.е. лежат на их пересечении, т.е. на одной прямой A1B1. Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости. Значит, A1B1 перпендикулярна AA1 и BB1. Угол A1AO равен углу OBB1 как накрест лежащий при параллельных прямых. Значит, треугольники A1OA и B1OB подобны по двум углам (еще один - прямой), а их стороны - пропорциональны. Т.к. по условию А1О:ОВ1=1:2, то АО:ОВ=1:2, т.е. AB=3*AO. Из прямоугольного треугольника AA1O AO=AA1/cos60=4/0.5=8 AB=8*3=24
S(amb)=S(bmc) => S(amb = 1/2 S(abc) Ak - медиана треугольника AMB, так как BK=KM S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc) Проведем ML параллельно AP ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC KP - средняя линия BMP=>PL=PB PL=LC; PL=PB =>PL=LC=PB S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6 S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12 S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5
96 см^2
за формулою прямокутної прапеції