ответ: arctg(√2tgα).
Объяснение:"Углом между указанными плоскостями MDC и АВС является угол, стороны которого – лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру".
1) ΔДОС: ОД=ОС по свойству диагоналей квадрата,
ОЕ- медиана по условию ⇒ОЕ- высота и ∠ОЕС=90°.
2) ΔОЕС: ∠ОЕС=90°, пусть ДС=а, тогда ОЕ=ЕС=а/2,
ОС²=(а/2)²+(а/2)²=а²/4 + а²/4= 2а²/4= а²/2;
ОC=а:√2= (а√2) :2.
ОМ:ОС=tgα ⇒ ОМ=ОС*tgα= (а√2) :2 * tgα= (а√2*tgα) :2.
3) ΔОМЕ: ОМ⊥ пл.АВС, ОЕ⊂пл.АВС ⇒ ОМ⊥ОЕ.
tg∠ОЕМ = ОМ:ОЕ = (а√2*tgα):2 :а/2= (а√2*tgα):а= √2tgα;
4) ОЕ⊂пл.АВС, ОЕ⊥ДС, МЕ- наклонная к пл.АВС,
ОЕ- проекция МЕ на пл.АВС ⇒
⇒ по теореме о трёх перпендикулярах МЕ ⊥ ДС.
пл.АВС ∩ пл.ДМС= ДС, МЕ ⊂ пл.ДМС и МЕ⊥ДС,
ОЕ ⊂ пл.АВС и ОЕ⊥пл. АВС ,
значит ∠(МДС;АВС)=∠ОЕМ= arctg(√2tgα).
1) Концы отрезка, который не пересекает плоскость, отдалены от нее на 3 см и 8 см. Проекция отрезка на плоскость равна 12 см. Найти длину отрезка.
-----
Обозначим отрезок АВ. Расстоянием от точки до плоскости является длина отрезка, проведенного к ней перпендикулярно.
АА1 и ВВ1 перпендикулярны плоскости, следовательно, перпендикулярны В1А1.
АА1║ВВ1,
АВВ1А1 - прямоугольная трапеция.
ВВ1=3 см.АА1=8 см,
ВС║В1А1 ⇒ А1С=ВВ1=3 см, АС=8-3=5 см.
ВС=В1А1=12 см.
Катеты прямоугольного ∆ АВС относятся как 5:12 - треугольник из Пифагоровых троек, ⇒гипотенуза АВ=13 см.
* * *
2) Из точки, которая находится на расстоянии 6 см от плоскости, проведены две наклонные. Найти расстояние между основаниями наклонных, если угол между каждой наклонной и ее проекцией равен 30°, а угол между проекциями наклонных 120°.
-------
Наклонные АВ и АС, расстояние до плоскости АН=6 см, ∠АВН=∠АСН=30°
ВН=СН=АН:tg30°=6√3
∆АНС равнобедренный, угол ВНС=120° ( дано).
Проведем высоту НМ к основанию ВС. Высота в равнобедренном треугольнике - биссектриса и медиана. ⇒ ∆ ВНМ=∆ СНМ, ∠ВНМ=СНМ=60°
ВМ=ВН•sin60°=6√3•√3/2=9
BC=2•BМ=18 см (по т.косинусов ВС также равно 18 см)
* * *
3) Из вершины А прямоугольника АВСD со сторонами 7 см и 14 см к его плоскости проведен перпендикуляр АМ=7 см. Найти расстояние от точки М до прямых DС и DB.
--------
Примем АВ=14 см, АD=7 см. Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки до прямой. По т. о 3-х перпендикулярах МD пп DC, МВ пп ВС.
В прямоугольном ∆ MAD катеты равны, следовательно, он равнобедренный с острыми углами, равными 45°.
MD=AD:sin45°=7√2.
Из прямоугольного ∆ МАВ расстояние МВ=√(AB²+AM²)=√(196+49)=7√5 см
Расстояние от М до BD отрезок МН, перпендикулярный диагонали ABCD.
По т. о 3-х перпендикулярах МН⊥DB,⇒ его проекция АН⊥DB.
АН=AD•AB:BD
∆ ADB=∆ MAB по двум катетам,⇒ DB=MB=7√5
AH=7•14:7√5=14/√5
MH=√(AM²+AH²)=√(441/5)=21/√5=4,2√5 или ≈ 9,39 см