1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
1. На прямой а откладываем отрезок АВ. Из точки В конца отрезка циркулем проводим окружность произвольным радиусом (около половины длины отрезка АВ). Из точки М пересечения отрезка АВ с окружностью этим же радиусом проводим засечки (пересечение дуг окружности) с обоих сторон отрезка АВ. Соединив эти засечки, получим прямую, перпендикулярную отрезку АВ, а, значит, и данной прямой. 2. Проделав предыдущую операцию на втором конце отрезка (А), получим второй перпендикуляр к прямой АВ. Отложим на полученных перпендикулярах с одной стороны отрезка АВ циркулем отрезки равной длины. Соединив полученные точки, получим прямую, параллельную прямойАВ. 3. Чертим окружность с центром О. Через центр этой окружности проводим прямую а. Продолжаем эту прямую за точку М пересечения с окружностью и на этом продолжении от точки пересечения М откладываем отрезок МА, равный радиусу нашей окружности. Теперь из центра О нашей окружности и из точки конца А, отрезка МА, радиусом, большим радиуса нашей окружности, делаем засечки с обоих сторон прямой. Соединив эти две засечки, получим прямую b, перпендикулярную нашей прямой в точке пересечения ее с нашей окружностью и делящую пополам отрезок ОА, то есть касательную к нашей окружности. 4. На прямой откладываем циркулем отрезок АВ, равный одной из данных сторон. Из точек концов этого отрезка радиусами R и R1, равными длинам двух других сторон проводим засечку (пересечение дуг окружностей этих радиусов). Соединив полученную точку отсечки с концами первого отрезка, получим искомый треугольник. 5. На прямой a откладываем отрезок АВ, равный данной нам стороне. Из точки конца этого отрезка откладываем угол, равный данному α, совместив одну из его сторон с полученным отрезком. На второй стороне угла откладываем отрезок, равный второй данной нам стороне. Соединив точки концов первого ивторого отрезков, получим искомый треугольник.
72°*2=144°
<AOB=144°
<AOB/2=<AKB