Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид: a^2 + a^2 = c^2 2 * a^2 = c^2 Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид: S = 1/2 * a * a = 1/2 * a^2 Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S Отсюда, подставляя имеющееся значение: c^2 = 4 * 50 = 200 c = корень из 200 = 2 * (корень из 10)
Если соединить заданную точку с вершинами треугольника, то получим 3 треугольника с боковыми сторонами 3, 4 и 5 и с равными основаниями. По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине. а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω Получаем 4 неизвестных: а, α, β и ω. Поэтому добавляем четвёртое уравнение: α + β + ω = 2π. Ниже приведено решение системы этих уравнений методом итераций: α градус α радиан cos α a² = a = 25 24 150.0020 2.6180 -0.8660 45.7850 6.7665 41 40 96.8676 1.6907 -0.1196 45.7830 6.7663 34 30 113.1304 1.9745 -0.3928 45.7848 6.7664. С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.
Ab=|a|*|b|*cos(a,b)
|a|=4, |b|=5, cos(a,b)=cos45=V2/2
ab=4*5* V2/2 =10V2
примечание: V2 - корень из 2
Объяснение: