т.к Сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза . а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . т.к треуг прямоугольный то AC=AB(представим как х) ПОлучится уравнение . Х(в квадрате )+Х(в квадрате)=144. из этого получаем 2Х(в квадрате)=144 . Х=корень из 72 т.е 3 корней из 8 . AC=3 корней из 8(радиус)
1 найдем площ основания = Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п. Sосн=72п
2 найдем площ бок поверх Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 8
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
т.к Сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза . а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . т.к треуг прямоугольный то AC=AB(представим как х) ПОлучится уравнение . Х(в квадрате )+Х(в квадрате)=144. из этого получаем 2Х(в квадрате)=144 . Х=корень из 72 т.е 3 корней из 8 . AC=3 корней из 8(радиус)
1 найдем площ основания = Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п. Sосн=72п
2 найдем площ бок поверх Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 8
3 Sпол = Sбок+Sосн=36п корней из 8 + 72п
Всё