В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. Доказательство: Пусть АБВ - равнобедренный треугольник , АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали.Точку пересечения диагоналей обозначим О.Проведем ОЕ перпендикулярно ВД.Соединим В и Е.В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. треугольник ВЕД - равнобедренный Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД)синус угла АВЕ=а:2а=0,5, отсюда следует что угол равен 30°Второй угол, на который диагональ ВД поделила угол АВС, равен угол СВЕ= 90°- 30°= 60°Остальные углы прямоугольника делятся диагоналями также на углы 30° и 60°.
Доказательство: Пусть АБВ - равнобедренный треугольник , АК и БЛ - его медианы. Тогда треугольники АКБ и АЛБ равны по второму признаку равенства треугольников. У них сторона АБ общая, стороны АЛ и БК равны как половины боковых сторон равнобедренного треугольника, а углы ЛАБ и КБА равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны АК и ЛБ равны. Но АК и ЛБ - медианы равнобедренного треугольника, проведённые к его боковым сторонам.