ответ: 1) Х =√61
2) х = 13
Объяснение: 1) Теорема Пифагора - квадрат гипотенузы равен сумме квадратов катетов.
В ромбе диагонали в точке пересечения делятся пополам. Таким образом Х² = (KR/2)² + (MN/2)². Отсюда Х = √{(KR/2)² + (MN/2)²} = √{(10/2)² + (12/2)²} = √(25+36) = √61
2) Площадь (S) трапеции равна произведению средней линии (Lср) трапеции на высоту (h) трапеции. Средняя линия трапеции равна половине суммы длин оснований, т.е. Lср = (QN + TM)/2 = (5 + 17)/2 =22/2 = 11. Теперь найдем высоту трапеции. h = S/Lср = 55/11 = 5.
См. рисунок. Из N опустим перпендикуляр на ТМ. Отсюда КМ = ТМ - КТ = 17 - 5 = 12 Тогда Х² = h² + КМ². Отсюда Х = √(h² + КМ²)= √(5²+ 12²) = √169 = 13
1. воспользуемся тем. что скалярное произведение двух ненулевых векторов равно произведению модулей этих векторов на косинус угла между векторами. по первому рисунку IuI=√(2²+2²)*5=5√8=2*5√2=10√2; IvI=2*5=10, угол между этими векторами α=45°; поэтому скалярное произведение этих векторов равно 25*2√2*2*cos45°=25*4√2*√2/2=25*4=100
2. можно отложить от одной точки векторы →а и →m, тогда они будут одинаковы по длине, равной 2*5=10 и противоположны по направлению, т.е. угол между векторами 180°, cos180°=-1, и скалярное произведение равно
10*10*(-1)=-100
3. если же отложить от одной точки векторы →n и →d, то видим, что угол между этими векторами равен 90°, тогда скалярное произведение равно нулю, т.к. cos90°=0
ответ 1. 100; 2. -100; 3. 0