АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
1. Основания трапеции параллельны: AD||BC, тогда можно найти угол ABC, рассматривая его как односторонний с углом BAD в параллельных прямых, пересечённых секущей: ABC = 180° - угол BAD = 130°;
2. Угол ABD = 90°, угол ABC = угол ABD + угол DBC, тогда угол DBC = угол ABC - угол ABD = 130-90 = 40°;
3. Рассмотрим треугольник BCD, он равнобедренный, так как по условию BC = CD, следовательно углы при основании равны: DBC = CDB = 40°;
1. Исходя из свойств трапеции: BC||AM, значит BC||KP, BK и CP - перпендикуляры, тогда BC = KP = 5см;
2. AM = AK + KP + PM; трапеция ABCM - равнобедренная (AB = CM, угол А = углу М), значит AK = PM = x:
AM = 2x + KP 7 = 2x + 5 x=1см;
3. Найдём тупые углы трапеции: ее основания параллельны, а следовательно угол BCM = 180°- угол PMC = 120° (как односторонние углы в параллельных прямых):
4. Угол BCP = 90° (так как угол KPC = 90° = BKP), значит так как угол BCM = BCP + PCM => PCM = BCM - BCP = 120°-90°=30°;
5. Рассмотрим прямоугольный треугольник CPM, по теореме о 30° катет, противолежащий углу в 30° равен половине гипотенузы следует: CM = 2PM = 2см;
Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются).
Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а.
Есть теорема:
Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую.
Что и требовалось для доказательства.