Обънайдем середины отрезков:
1) точка К на отрезке АС: К(-2+0/2;2+0/2) = K(-1;1)
уравнение медианы ВК: х-х1/х2-х1 = у-у1/у2-у1
х-1/-1-1 = у-2/1-4 = 3х-2у + 1 = 0
2) тока L на отрезке АВ: L(-0,5;3)
уравнение медианы CL: х-0/0,5-0 = у-0/3-0 = 3х +0,5у=0
3) точка M на отрезке ВС: M(0,5;2)
уравнение медианы АМ: х+2/0,5+2 = у-2/2-2
х+2/2,5 = 1, х = 0,5
!!!уравнение сторон:
уравнение стороны АВ: х+2/3 = у-2/2 = 2х-3у+10 = 0
уравнение стороны АС: х+2/0+2 = у-2/0-2 = 2у-2х = 0
уравнение стороны ВС: х-1/0-1 = у-4/0-4 = 4х-у = 0
Угол АОС=120° Меньшая дуга АC=120°,
большая дуга АC=360°-120°=240°
Возможны два случая расположения т.В.
а) Точка В расположена на большей дуге АС.
Точка В делит дугу 240° в отношении АВ=3 части, ВС=5 частей. ⇒
◡АВ=240°:8•3=90°; ◡ВС=240:8•5=150°.
Тогда в ∆ АВС его вписанные углы равны:
угол В равен половине центрального угла АОС=120°:2=60°.
Угол С равен половине центрального АОВ и равен 90°:2=45°.
Угол А=половине центрального СОВ и равен 150:2=75°⇒
Углы ∆ АВС равны 45°, 60°, 75°
б) Точка В расположена на меньшей дуге АС.
◡АВ=120°:8•3=45°; ◡ВС=120°:8•5=75°
Вписанные углы равны половине градусной меры дуг, на которые опираются.
∠А=75°:2=37,5°
∠С=45°:2=22,5°
∠В=240°:2=120°
Углы ∆ АВС равны 22,5°; 37,5°; 120°.