1. Точка М не лежить у площині прямокутника ABCD. Яке взаємне розташування прямих МА і СD ?
А) Перетинаються; Б) паралельні; В) мимобіжні; Г) паралельні або мимобіжні.
2. Пряма а паралельна площині , пряма b належить площині .
Яким може бути взаємне розміщення прямих а і b?
А) Паралельні; Б) перетинаються; В) мимобіжні; Г) мимобіжні або паралельні.
3.Точка М лежить поза площиною трикутника АВС. Точки К, Р, Е і D – середини
відрізків МА, АВ, МС і ВС відповідно. Яке взаємне розміщення прямих
КР і ЕD?
А) Перетинаються; Б) мимобіжні; В) паралельні; Г) мимобіжні або перетинаються.
4. Сторона АВ паралелограма ABCD належить площині , а сторона СD не
належить цій площині. Яке взаємне розміщення прямої СD і площини ?
А) пряма СD перетинає площину ; Б) пряма СD паралельна площині ;
В) пряма СD лежить у площині .
5. Пряма а паралельна площині . Скільки площин, паралельних площині
можна провести через пряму а?
А) Одну; Б) дві; И) жодної; Г) безліч.
6. Як розташовані площини і , якщо пряма а перетинає площину
і паралельна площині ?
А) Паралельні; Б) перетинаються; В) збігаються; Г) визначити неможливо.
7. Точка М не належить жодній із паралельних площин і .
Скільки всього існує площин, які проходять через точку М і паралельні площинам
і ?
А) Одна; Б) дві; В) жодної; Г) безліч.
8. Площини і паралельні. Пряма а перетинає площину .
Як розташована пряма а відносно площини ?
А) Паралельна площині; Б) лежить у площині; В) перетинає площину;
Г) визначити неможливо.
9. Основи трапеції паралельні площині . Яке взаємне розміщення площини
трапеції і площини ?
А) Перетинаються; Б) паралельні; В) збігаються; Г) визначити неможливо.
10. Площини і паралельні. Площина перетинається з площиною
по прямій а , а з площиною - по прямій b. Яке взаємне розміщення прямих
а і b?
А) Перетинаються; Б) мимобіжні; В) паралельні; Г) визначити неможливо.
с решением и на листочке
ответ: 16 (ед. объёма)
Подробное объяснение:
Схематический рисунок осевого сечения шара, вписанного в конус – окружность с радиусом r (радиус шара), вписанная в треугольник АВС. В данной задаче треугольник АВС правильный, его сторона равна диаметру основания конуса. ⇒ АВ=ВС=АС=d=2R
Высота ВН треугольника АВС – высота конуса ВН=АВ•sin60°=2R•√3/2=R√3. Подставим значение высоты в формулу объёма конуса:
V(к)=πR²•h/3= πR²•R√3/3=πR³/√3 ⇒ πR³/√3=36
Радиус r окружности, вписанной в правильный треугольник, равен 1/3 высоты этого треугольника ( высоты конуса). r=OH=(R√3):3=R/√3
Подставим найденное значение радиуса шара в формулу его объёма:
V(ш)=4π(R/√3)³/3=4πR³/9√3
Из найденного объёма конуса πR³/√3=36
подставим это значение в выражение объёма шара:
V(ш)=4•36/9=16 (ед. объёма)