а у квадрата все стороны равны!
Значит, ABCD-не квадрат!
Определить, что ABCD - прямоугольник можно доказав, что углы между векторами в каждой вершине - прямые, т.е. =90 градусов (векторы перпендикулярны друг другу).
Для этого нужно вычислить скалярное произведение этих векторов, если оно =0, значит векторы перпендикулярны и угол между ними - прямой.
Проверим это
(AB*BC)=2*0+0*2-0*2=0
(BC*СD)=0*2+2*0-2*0=0
(CD*AD)=2*0+0*2-0*2=0
(AD*AB)=0*2+2*0-2*0=0
Все верно, все углы прямые, ABCD - прямоугольник (но не квадрат).
1
1) δавс, ∟авс = 35 °, ∟асв = 83 °, вм и ск -
высоты, пересекаются в н. найходим внс.
2) δавс.
∟а = 180 ° - (∟abc + ∟асв),
∟а = 180 ° - (35 ° + 83 °) = 62 °.
3) δавм.
∟amb = 90 ° (вм - высота),
∟abm = 180 ° - (∟амв + ∟a), ∟abm = 28 °.
4) δквс.
∟вкс = 90 ° (ск - высота),
∟вск = 180 ° - (∟вкс + ∟квс),
∟вск = 55 °, ∟abc = 35 °,
∟abc = ∟abm + ∟mbc, 35 ° = 28 ° + ∟mbc, ∟mbc = 7 °.
5) δнвс.
∟нвс = 7 °, ∟bch = 55 °,
∟внс = 180 ° - (∟hbc + ∟всн),
∟внс = 180 ° - (7 ° + 55 °), ∟bhc = 180 ° - 62 ° = 118 °.
ответ 118
это точно все дано или было что-то еще?